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S 1.

2.

Flow parameters with bars over them designate principal-flow quantities.

The symbol k = 1;2 indicates the flow ranges y =54w (k =1) or y = e
(k = 2) for the Lock profile and the ranges y > 0 (k = 1) or y < 0
(k = 2) for the Vortex layer.

The symbol N indicates quantities describing neutral disturbances as
limiting cases for amplified disturbances.

The symbol ¢ indicates quantltles in the critical layer of the flow
field (only for neutral dlsturbances)

The symbol r or the expression Re <-> 1nd1cates the real component of a
complex quantity. =




‘6. The index i or the expression Im <-> indicates the imaginary component
of a complex quantity.
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STUDY ON THE STABILITY OF BOUNDARY LAYERS AND.
R COMPRESSIBLE FLUIDS1 '

H. Gropengiesser, Diploma Engineer, Turbulence Research
Institute of the DVL ’

ABSTRACT. This paper- is concerned with the-stability of
free boundary or shear layers observed in jet flows and in
the wakes of blunt bodies. The investigation of inviscid
stability properties involved a laminar velocity profile
which develops - from a compressible vortex layer under the
influence of fluid friction. ~The amplification and propa- '
gation of phase velocity of small-amplitude disturbances
were studied as a function of disturbance frequency and
angle of wave propagation at various Mach numbers and

~ temperature ratios. The phase velocities of disturbances
relative to flow can be less than or greater than the speed
of sound. Accordingly, the disturbance is‘classified as
subsonic or supersonic. It is found that a change in the
character of the disturbance may ihvolve -the amplification
of a second mode.

1, “Introduction S /7%

In past years, a large number of papers on boundary-layer stability
studies have appeared which involved the formation of turbulence in laminar
flows. Stability theory has reached this goal only to the extent that -it
permits-the determination of an upper boundary for the Reynolds number range
(the so-called upper critical Reynolds number) for a particular flow,
wilthin which the laminar configuration exhibits stable behavior with
respect to all disturbance. If one does not consider special types of flow
in which one laminar flow configuration develops into another, exceeding
the critical Reynolds number Re_crit always initiates the first step of the-

‘transition process, since disturbances carried into the flow are now -
amplified in the direction of flow and form 'nucleus cells" for turbulence
downstream. Until now, however, stability theory has not been able to pro-
vide any information regarding this mechanism.

This paper is concerned with the stability of free boundary layers or
shear layers which are formed from each wall, under the influence of a-high
velocity gradient and fluid friction. They are observed with free jets and
in the wakes of blunt bodies (see Figure 1). An important characteristic of
these boundary layers is the inflection point which occurs in the velocity

1 Dissertation accepted by the Mechanical Engineering Faculty of the
Engineering University of Berlin for the Doctorate in Engineering.
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profile. Rayleigh [43] showed that velocity profiles with inflection

points are unstable in a frictionless, incompressible fluid. According to
Tollmien [54], this "inflection-point criterion'''is, as a rule, not only a
necessary but also a sufficient condition. This "inflection-point criterion"
was physically interpreted by Lin [29] as a condition for instability of

the equilibrium of the induction effects originating at various points in

the flow. The instability of free boundary layers is a pure induction
instability, upon which the fluid friction has only one damping effect.

Such a boundary-layer instability was first observed by Leconte [18]
with gas flames. He found that a flame was shortened by the effect of
sound. Tyndall [S5] demonstrated the character of this instability by
experimental means. He made a free air jet visible with smoke and observed /8
that the edges of the jet developed vortices and became turbulent. A year T
later, while studying vortical layers, which would .also mark the edges of
an ideal frictionless. free jet, Helmholtz [13] came to the conclusion that
a disturbed vortex layer must always be formed as the result of self-
induction. Mathematical confirmation of this concept was provided by
Rayleigh [42]. He was able to show, among other things, that a plane vortex
layer in a frictionless: fluid is unstable relative to small, wave-shaped
disturbances of arbitrary frequency and wavelengths..

Many years later, the problem of the effect of sound upon free boundary
layers was once more studied by G. B. Brown [3, 4]. Brown found that sound
can only have an effect upon the formation of the vortex, but not upon its
further development, and that the flow can be affected only within a
particular range of sound frequencies. The preference exhibited for a
particular frequency range can be explained by the fact that a free jet in
a real fluid is bounded by a shear layer of finite thickness; in contrast to
" this, a plane vortex layer in an ideal fluid possesses no characteristic
length, and all frequenc1es have equivalent effects

New, extensive studies on the phenomenology of free jets have been
carried out by Wille [58, 59, 60, 61] and his colleagues, -Domm [7],
Wehrmann [56, 57], Timme [53] and Fabian [10]. With the aid of hot-wire
- measurement techniques, they studied the formation of vortices with and
. without acoustic effects, in flat and round free jets in air at Reynolds

numbers of Re = 103 to 10° and jet velocities of up to Gi = 20 m/s. The

following concept was worked out for the formation of free-jet turbulence:
'The boundary layer separated from the nozzle edge in a laminar manner
experiences an undulation which becomes highly amplified in the direction of
flow. The boundary layer subsequently rolls into individual vortices which
decay three-dimensionally downstream and initiate the turbulence.

Sato [45, 46, 47] and Michalke and Wille [37] have measured the
amplification of disturbances induced artificially in free-jet boundary
layers at low velocities by acoustic effects. New detailed and improved
measurements have been carried out by Freymuth [11]. He found that the dis- /9
turbance amplitudes in the direction of flow increase exponentially until a
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. "saturation value" is.reached. By correlating hot-wire signals and smoke.
images of free-jet boundary 1ayers Freymuth was able to show that the
_boundary layer becomes very wavy in the region of exponentially 1ncrea51ng
disturbance amplitude, whereas the actual vortex-buildup process occurs in
the '"saturation amplitude" region.

It is due to historical factors that all theoretical stabilities
studies until now have assumed the existence of disturbances amplified as a

function of time, rather than location,

A comparison of theoretical and'experimental results was only possible if

; the timewise increase in disturbances at a fixed position was interpreted
. as three-dimensional development in the direction of flow, using a linear

* transformation with the phase velocity of the disturbance (see Schubauer and
Skramstad [49]). Since the velocity profiles measured in the free-jet
boundary layer are described well by the hyperbolic-tangent profile,
Michalke [34, 36] calculated the stability behavior of this profile with
respect to small, two-dimensional, wave-shaped disturbances, assuming
spacial and timewise nu111f1cat10n, flat flow and frictionless fluid.
Michalke found that only the stability calculations for spacially amplified
. disturbances correlated properly with the experimental results of Freymuth;
there was very good agreement with respect to magnitude of exponential
amplification of the disturbances and their amplitude and phase curves at
low frequencies. It is also not surprising that the theory of timewise
amplification does not produce the expected results since, as Gaster [12]
has shown theoretically, the transformation of the timewise amplification
parameter mentioned above is permissible only for slightly amplified dis-

turbances, whereas a high amplification of disturbance, as occurs for example

~in the free-jet boundary layer, also makes a stability calculation for
spacially amplified disturbances necessary.

The conditions for the stability calculations on.a free shear layer in
air at low velocities and with spacial amplification, as carried out by
Michalke, will be discussed once more in detail, since they also form part
of the foundation for the author's own calculations:

1.

The calculations are based on incompressible disturbance equations.
It will be shown later that this is only possible if the tempera-

ture differences occurring in the boundary layer are small.

The principal flow was assumed to be planar, a step which is always
possible if the dimensions of the core of the jet are large
relative to the boundary-layer thickness.

The flow was assumed parallel, i.e., it possessed only a ve10c1ty
component in the direction of flow. This assumption is approxi-
mately valid for all flows with boundary-~layer character. In
addition, a change in the velocity profile in the flow direction
was not considered. "

as they actually occur in experiments.
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The stability calculation was carried out for frictionless con-
ditions (Re » «), i. e., it was assumed that the only effect of
a fluid friction is the formation of the velocity profile and
that the disturbance motion can be described with frictionless
character (induced instability). This assumption is justified by
Freymuth's measurements and by Lessen's [22, 26] theoretical
studies on the stability of the Lock profilel)with spacial
amplification and low Reynolds numbers in a compressible fluid.
Figure 2a shows the effect of fluid friction upon the dis- ,
turbance-wave number for various degrees of amplification. One
can see that the Lock profile for Re < 3.7 is completely stable
and that the wave numbers for large Reynolds numbers (according
to Figure.2b, for Re > 300) are still only a function of the
ampllflcatlon and can thus be determined from a frictionless
stability computation. Figure 3 shows that the disturbance
amplification for finite Reynolds number is always smaller than
amplification in the frictionless case, and thus the fluid
friction has only a damping effect (see Betchov [1]).

Disruption amplitudes were assumed to be small relative to the
corresponding principal-flow quantities, so linearized equations
can be used. Thus the disturbances are found to experience a
purely exponential rate of growth. Michalke [35, 36] was able to
use this simplified theory for approximately calculating the
rolling of the free-jet boundary layer, although the measurements’
by Freymuth [11] have shown the nonlinear character of this
rolling.

It was assumed that the undulating disturbances are propagated only

in the direction of flow (two-dimensional disturbances). It
should be noted heré that, according to Squire's theorem [50],
two-dimensional disturbances involve a smaller upper critical
Reynolds number than three-dimensional disturbances in incompres-
sible, plane flow; these are disturbances which are propagated at
an angle 0 to the direction of flow (see Section 3). In other
words, two-dimensional disturbances are more strongly amplified
than three-dimensional ones in incompressible flow, a fact which

- is also supported by the author's calculations for the Lock profile

(see Figures 32 through 34). From the good agreement between the

measured and calculated amplification parameters, one can conclude
. that a disturbance produced artificially in the boundary layer is

propagated at the angle © to the direction of flow which is

~

l1n this.papér, Lock profile refers to the velocity profile formed from a

plane discontinuous profile under the influence of fluid friction.

It was

first calculated by Lock [30] for incompressible fluids, and later by

Chapman [6] for compr3551b1e fluids (cf. Section 2).



" associated with the greatest degree of amplification or for which -
it can remove a maximum level of fluctuation energy from the
principal flow. However, this conclusion does not appear to be
completely certain, due to the small number of available experi-
mental results (see W. B. Brown [5] and Mack [33]).

The first theoretical stability studies which take the effect of the
. compressibility of the flowing medium into consideration were carried out,
among others, by Lees and Lin [19], Lees [20], Dunn and Lin [9], Reshotko
[44] and Lees and Reshotko [21] for wall boundary layers, and by
Landau [16], Pai [41], Lin [28], Lessen, Fox and Zien [23, 24, 25] and _
Miles [39] for free boundary layers. The results obtained up to 1955 have
been summarized by Lin [29].

The difficulties introduced into the stability studies through con-
sideration of the compressibility of the fluid result from the interaction
between the mechanical and internal energy of the flowing gas, manifest /12
by the coupling between velocity and temperature profiles of the flow, and
from the fact that the flow velocity and the phase velocity of the flow
can be on the order of the velocity of sound. Compressibility produces a
marked change in the velocity and temperature profiles and at the same time
affects the development of disturbances. -In.this connection, Lees and Lin -
[19] pointed out the possibility that a disturbance and compressible flow
can produce a turbulent transition, but can also lead to the formation of a
shock. It was found desirable to characterize the distrubances as sub-
sonic, sonic or supersonic, depending upon their behavior outside the
boundary layer. This is meant to indicate that the velocity of the dis-
“turbance in the direction of flow, relative to that of the fluid, is less
‘~than, equal to, or greater than the local sonic velocity of the gas.

The two most interesting results obtained for compressible wall boundary
layers indicate (see Lees and Lin [19]) that the upper critical Reynolds
number increases with increasing Mach number and with decreasing wall
temperature. In other words, increasing Mach number and cooling of .the flow
stabilize the wall boundary layer. These results were obtained by Lees [20]
for Mach number M < 1.3 and two-dimensional subsonic disturbances. In
more recent articles, Mach [31, 32, 33] p01nts out that for M > 2.2, the
stability behavior of wall boundary layers is changed markedly by the
occurrence of supersonic disturbances. The calculations show that, in
addition to the first disturbance mode covered by Lees [20], other modes _
with smaller and smaller disturbance-wavelengths are also possible, of which
the second mode is most strongly amplified and thus determines the stab111ty
‘behavior of wall boundary layers for Mach numbers M-> 2.2. The result is
that the upper critical Reynolds number becomes almost. independent of the
temperature conditions at the wall for high Mach numbers. A stabilizing
effect is produced by cooling only so far as the "integral amplification" of
a disturbance decreases with decreasing wall temperature due to the increas-
ing Reynolds number in the direction of flow. ”Integral amplification"
refers to the amplification which a disturbance in the boundary layer under-
goes when the changlng veloc1ty proflle in the d1rect10n of flow and the
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local amplification parameter which changes with it, are taken into
consideration.

Mack also found that for Mach numbers M > 3.8, the stability behavior
of wall boundary layers changes considerably. The maximum amplification is
only reached as Re > =, and fluid friction has only a damping effect, as
was also found for imcompressible, free boundary layers; only the critical
Reynolds number is very much. greater for wall boundary layers than for free
boundary layers. It was thus possible to carry out frictionless disturb-
ance calculations for high Mach numbers. Mack and W. B. Brown [5] also
calculated the amplification of three-dimensional disturbances of the first
mode and found that they are much more highly amplified at high Mach numbers
than two-dimensional disturbances.

Experimental studies on the amplification of artificially induced
disturbances in wall boundary layers were carried out, among others, by
Laufer and Vrebalovich [17] and Kendall [15]. Comparison with theory only
showed satisfactory agreement for maximum amplification if one assumed that
the disturbances were propagated at an angle © = 60°, for which the theory -
gives a maximum amplification of the first mode. W. B.. Brown was able to
improve the agreement by taking the effect of the v component of the princi-
pal flow into consideration in his stability calculations. However, one
should still exercise caution in ‘assessing the level of agreement attained,
since unfortunately all of the theoretical works cited are still based upon
the concept of timewise-amplified disturbances, and in addition, there is
no experimental proof of the -three- d1men51ona11ty of the dlsturbance for
the work of Laufer and Vrebalovich [17].

From the studies by Mack, which have shown the change in the insta- -
bility character of wall boundary layers with increasing Mach number, one
can conclude, with-a certain degree of justification, that the 1nstab111ty
behavior of free boundary layers is also satisfactorily described in com-
pressible fluids, qualltatlvely and quantltatlvely, by a frictionless
-disturbance calculatlon

The articles quoted above regarding free boundary layers in gases thus
all study their frictionless stability behavior. While very many articles
cover the compressible vortex layer (see Pai [41], Lessen, Fox and Zien
[23, 24] and Miles [39]), three studies by Lin [28] and Lessen, Fox and
Zien [25, 27] are concerned with the stability of the Lock profile. These
works are limited to determination of the neutral disturbances as a function
of Mach number and angle of incidence of the disturbances. The temperature
~of the tranquil surroundings was always equal to the isentropic -stagnation -
temperature; this refers to the temperature which is achieved if the princi-
pal flow is decelerated isentropically to zero velocity. Lessen found a
change in the character of neutral disturbances with increasing Mach number:
While the disturbance equations for two-dimensional neutral disturbances
remain regular at low Mach numbers, they become singular for larger Mach
numbers. Mack found similar neutral solutions in the:frictionless disturb-
ance computations for wall boundary layers and coined the phrase 'singular

/14



neutral solutions' for them. A computation of the timewise or spacial
amplification of disturbances has not been made for compressible free
“boundary", layers.
This paper provides several new results regarding the spacial amplifi-

cation of two-dimensional and three-dimensional disturbances in the free
boundary layers, taking into consideration the effect of Mach number and
temperature of the quiescent surroundings. The calculations were carried
out for Mach numbers 0 é‘M.S 3 and environment temperatures 0.6 < T, < 2 for

air under the conditions discussed above. As for the wall boundary layer,
the Mach number has a stabilizing effect. On the other hand, one finds-
that cooling of the free jet makes the boundary layer unstable. The effect
of the temperature of the surroundings is reversed with the occurrence of
supersonic disturbances, and cooling of the free jet now has a stabilizing
effect. It is shown, moreover, under what conditions singular neutral
disturbances occur as a limiting case of amplified disturbances and how they
come under the regular neutral solutions. The transition is related to the
occurrence of a second, though relatively weakly amplified mode. The
amplification of higher modes was not found, but their existence can not be
ruled out.

"All numerical calculations were carried out on a Type Z 23V digital
computer from the Zuse Co., Bad Hersfeld.

2. Computation of the Undisturbed P]ane”RriHcipal Flow .. ]15

The laminar velocity profile of the free boundary layer, on which the
stability study is based, is produced from a plane vortex layer through
the effect of fluid friction (Figure 1). A velocity profile computed in this
manner is a good approximation for a free jet with a large jet core and
thin wall boundary layer at the nozzle outlet. For a supersonic free jet,

a Laval nozzle is required which is corrected for flow parallelism.

2.1 Initial Equations

The initial equations for computing the principal plane flow are first
-given for dimensional quantities (symbols with asterisks) and only later
made dimensional by suitable means (symbols without asterisks). It is
assumed that the principal flow has boundary-layer character so that the
known boundary-layer simplifications apply. In addition, pressure p* =
const. is to prevail throughout the entire flow volume. The flowing medium
is to obey the thermal equation of state for ideal gases. As is well known,
the specific heats of the gases can then also be a function :of ‘temperature.
The velocity components u* and v* and the density p* and temperature T* are
‘then calculated from the following equations:

p-x-(ux- g: ._vx' auﬁ) ( » auﬁ) (2.1)




Continuity equation:

3(p™v) _ (2.2)
ay*r =0 :

Energy equation:

SEYRS L LN

. - . #( QU N2 (2.3)
P p ax,s(- "V ay ay—:\ A ay«g 1L (d)’%)
Thermal equation of state for ideal gases:
'lp*" = R" p'):' T = const. 7 (2.4)
The following boundary equations apply: . : /16
S Tl et ETS N L COt B
y* = Y= S (2.5)
: % ¢ g 3¢ By o3
Ly @ uF (XY ) Fuy =0 T(x,y )= Tp

2.2 Transformation of the Initial Equations

According to Busemann and Crocco (see Schlichting [48]), it is possible
to satisfy the energy equation (2.3) identically under certain conditions
by using a suitable equation for the temperature. If one introduces into
" the boundary-layer equations (2.1) to (2.3) the assumption that temperature
is dependent only upon the variable u*, equation (2.3) yields:

: 3 3 au™ i dZT* |
dU”“ICP ay*‘(“ﬂ a;*)" ay*wa;*)] (fﬁ du* +”\)(ay“) - &9

For gases, the Prandtl number

is independent of temperature over wide ranges, so (2.6) can be written in
the form:



w Pr=1 dT*

% ou’ dzr” au’2
[ °p TPr du" ay (L ay"> =) (du (dy") (2.7)
The statement T* = T*(u*) is thus a solution to the system of j
equations for Pr = 1 and : . i ;
dzT* 1 ] (2_3)'5

du*z = Cp* .

The following studies are to be limited to gases whose Prandtl numbers
are approximately equal to 1 and for which the change in specific heat is
negligible for temperature range occurring in the boundary layer, i.e., we
make the overall assumptions, for the flowing gas, that Pr = 1 and cp* =

const. In this case, however, (2.8) can be integrated twice, taking the
boundary conditions (2.5) into consideration, and one obtains:

| T*T 2 * wo TR 2.9) /17
; ,*2 B . ('i- -LL;-;) + (1__2§) —‘:]—}-,; (v ) /__.
T ch R} WY

e T et T R TP

Equatlon (2. 9) shows the coupllng between veloc1ty proflle and temperature
profile. This identically satisfies the energy equation (2.3). Dimension-
less quantities are introduced for further treatment of the system of

- equations (2.1), (2.2) and (2 4) for determining the velocity components

u* and v* and the density p*.:  The flow parameters in the undisturbed free
jet for y* = +» (subscript 1) are used as reference quantities. The
reference length 1* which is introduced only becomes available at the end !
of this Section. The laminar principal flow is then described by the

following dimensionless characteristics:

L

e K
' 3% 4 . o
1 uqg L 'e

| Re —J;r :

. Reynolds number

Mach number

i}

M u- t (2.10)

| *®
' ®
| ol

Isentropic exponent N

.
» i ST - P . R
1 - canen . e -

Equations (2.1), (2.2) and (2.4) then have the followihg.dimensionlesé
form: : ' '




plugy *Vay )™ Re 3y " By (2.11)
ax » ay o (2.12)
f’t Tip=1. (2.13)

For the qoupling condition, equation (2.9), in dimensionless form,

T __,(:551 M2 u‘+T2>('iMu) tu. (2.14)

By introducing a stream function, one can first satisfy the continuity
equation (2.12) identically:
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_ Employment of . a transformation glven by L. Howarth (see Schllchtlng [48])
makes it possible to give the equation almost the same form as for-incompres--

sible flow. In L. Howarth's work, a new, 1ndependent variable Y is defined
in accordance with the equatlon

If the stream function ¥ and the new coordinate Y are 1ntfoduced into
the boundary layer equation (2.11) and the gas equatlon (2.13) is taken
into con51derat10n, the result is

’ 2, 2 2.
8@ 8 q) an 3% 1 B 8 d 7
Y aan ax ayz " Re av (T av%) (2.17)

The transformation .

10 S

.y_! £ (2.16)



> ¢=F(1])'I/§x'é with =Y Re

Lo S .' (2.18)

can be used to reduce the partial differential equation (2.17) to the
follow1ng ordlnary third-order differential equation F: . | i

2(% FY +F-F"=0 with ()= a%—. (2.19)

Assuming that the dynamic viscosity u of the gas can be approx1mated
linearly in the temperature range under consideration, expressed in
dimensionless notation by p = T, (2.19) is converted into the corresponding
equation for 1ncompr6551ble flow

. :
" 2.20
‘i' ZF""}‘FF =0. : ( )
-Chapman [6] solved (2.19) numerlcally for air w1th the approximation /19
v = T and the more exact Sutherland equation p = T0-76 for dynamic viscosity.

-The two results deviate from each other by only a small amount, so the
velocity profile can be calculated by numerical integration of the
differential equation (2.20). For special values of Mach number M and’
environment temperature T2, the profiles are obtained by converting the

~results to the (x, y)-coordinate system using (2.16) and (2.18):
| ,/Re ’=f“ (2.21)
|

" In particular yVRe/x = n is obtained for M = 0 and T(y) = T = 1, which

. shows its relationship to the incompressible problem. Numerical 1ntegrat10n
-of (2.20) was carried out by Lock [30] with the boundary conditions

‘“»-};“!: F'”=U’] :1, .
. (2.22)

1]"""“°°_ .'F'=U2=0';
and the requirement that the flow-division line coincide with the x-axis.
The flow-division line, originating at the nozzle edge, is so defined that
the momentum loss of the principal flow above the division line is recovered
in the flow below the division line. From the solution curve F = F(n),

- .
A"V

11



\

' In the following, therefore, we use

~equations (2.15); (2.18) and (2.21) yield, following éeveral intermediate

calculations, the velocity components
1 e S 1 'ﬂ :
CusF, vVxRe = (F [ Tdy-TF), (2.23)
. (4] !

where T = T(F'(n)). For momentum thickness ¢, Lock finds

(2.24)

Momentum thickness 'is thus independent of Mach number and environment
temperature. If (2.24) is again written with dimensional quantities, one
obtains L S

It can be seen that the momentum thickness is a characteristic length
in the problem; for this reason the reference length 1* is chosen pro-
portional to the momentum thickness:

1
.
l,” R

E ey g,

2.3 Solution to Differential Equation (2.20)

The profiles calculated for the u and v components of velocity and the
temperature are shown in Figures 4, 5 and 6 for various Mach numbers M and

~environment temperatures T2. One can see that the temperature profiles are

effected much more by the Mach number than the velocity profiles of the u
2

component. . For the boundary-layer thickness § (ul = 0.999; u, = 0.001), the

numerical results yield

12

W{; /u1 (2.25)



. 6=5,608 + 0,249 M? + 10,492 T, (2.26)

which clearly shows the great effect of enviromment temperature upon the
boundary-layer thickness. ;

|

It was found that the velocity profile u = u(Y) can be approximated
well by the generalized hyperbolic-tangent profile, in accordance with
Michalke [38]

i 1 '
U= 1- ["2" (1 ~ tanh a (Y ~-Y ))]b (2.27)
with a = 0.307257, b = 3.695640, YO = 2.127137. Lock's results are given /21

very well by this function up to the third derivative. The coordinates of
the 1nf1ect10n point are independent of Mach number and environment tempera-
ture, Y ="y = 0 and u = 0.5873,

. For the v-component at the boundary-layer edges, the computation o
(cf. Figure 5) yields .

‘
!

! y(+00) VXRE =0,060 M2+ 0,266y,

V{-0) VXRE =0,620 Ty,

At constant environment temperature T2’ e

1

v M2

o~

i |
T T YeRe

applies for the ratio of transverse velocity to principal-flow velocity

within the jet. Both components can thus be of the same order of magnitude
near the forward nozzle edge (x = 0), for very small Reynolds numbers and in

the hypersonic region. In this work, it was assumed that Re = =, so '

v << u for x # 0. The boundary-layer flow can therefore be treated as plane
parallel -flow for a good approximation.

Due to the reference length 1* = 1*(x*) which was chosen, the velocity
proflle u given by (2.27), on which the stability computation is based, and
the temperature profile T given by (2.14) are only functions of the Y-
coordinate or y-coordinate (similar profiles). Thus the stability study -
also yields 'similar" Eigenfunctions, though which the secondary effect of
fluid frlctlon upon the ”1ntegra1 ampllflcatlon” of a dlsturbance in the R

13



direction of flow is expressed. Again, ”infegral amplification' refers to
the amplification which a disturbance in the boundary layer experiences,

taking into consideration the boundary-layer profile of the pr1nc1pa1 flow,
which changes in the direction of flow., :
3. Derivation of the Linearized Frictionless Disturbance Equation and
Formulation of the Eigenvalue problem
3.1 Initial Equations -
In order to derive the linearized frictionless disturbance equations,
one starts with the motion equations,,the continuity equation and the

energy statement and Cartesian coordinates for a frictionless fluid, and
with the equation of state for ideal gases, which in dimensionless form are

- - | 3D

3.2 Linearized Disturbance Equations

Equation (3.1) is valid for the disturbed flow, as well as for the

undisturbed principal flow. The principal flow is assumed frictionless here;

i.e., the vortex strength existing in the velocity profile at one point in
time is not subject to a change caused by dissipation. The disturbed flow
is now resolved into the stationary principal flow, the stability of which

e e e et N
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ié'to{be'studled and a superlmposed disturbance motlon which. changes
with time. In a plane parallel flow, one can state the following for
1nd1v1dua1 parameters of the flow: ; :

! i
. " 1
'
'

[ u= g+u; v=v,w=w';T= T+T‘ p p+p p p+p' - (3.2) /23

i
[ - 3

or, in general, Q = Q(y) + Q'(x, y, z, t), where Q is a parameter of the
principal flow and Q' is the corresponding turbulence value. If (3.2) is
substituted into (3.1), all terms which contain only principal-flow quan-
tities cancel out, since the undisturbed flow satisfies (3.1). If one

« assumes that Q' << Q for all disturbance values, the equations in the
turbulence values can be linearized, and one obtains:

CoogQu oou L, diy 1 9
p_.(t+ x TV dy) =T WMz ax
T I B
- p(5r * T 5x) "7 owmZ By
% - (3.3)
=B, - W S NS -1
p( ’r_+u X) - -K_M?'aZ’

3.3 Wave-Form Disturbance Equation

Since the coefficients are functions only of the independent variable y,
the following wave-form equatlon for the dlsturbance is possible:

| Or=alylexplilax+yz- Pl | e B
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In this way the system of partial differential equations is reduced to /24
ordinary differential equations. The amplitude function q(y), the wave T
numbers o and y and the frequency B can be complex. Only the real component

of Q' has physical meaning, of course. The wave-form equation for the
disturbance value does not mean a limitation upon generality, since any

arbitrary disturbance can be represented by a suitable Fourier series or a
Fourler integral.

The following equatioﬁ thus holds for the various disturbance parameters:

: (u',Vf'W',TuD',b')=(f,Clg-,0,h‘,€},r,Tc) exp [l(Ci.x +'YZ'-.Bt)]. | (3.5)

If (3.5) is substituted into (3.3), one obtains a system of fixed
equations for determining the amplitude functions qy): ’

s et T

P[I(Wﬁ‘)fﬂ? ]=—im, (3.6)
K t
i aZ(G-%—m =i Gn
- -E . - - [T —
pcu(u- )h -I'Y %M (3.8)
: ou(u—-g-)r +a&pp=-p[l(af+"(h)+a‘9] (3.9)
[an(u——p-)e a&pT]=‘"[n(afi-'yh)+aq)]('H 1), " (3.10)
LA RILR (3.11)
where now () = %;—.

3.4 Differential Equation for the Amplitude Function

It is found desirable to first reduce the system of’equations to two
equations for m and ¢. If one multiplies equation (3.9) by T and adds it to /25
(3.10), one obtains, u51ng (3.11) and the relationship. pT' + Tp' = 0, the T
expression

——

1 ai(G} %)n‘ =_K[;(af+yh)+'akp:].3: (3.12)

St oo oLt e Mt maew e oLt [ SR
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One eliminates h from equations (3.8) and'(3.12),"

Y
¥

paNu-Eﬁhme)~l— [Yz M? Zm—éﬁ%.f (SJQ

and then the unknown £ from equatlons (3 6) and (3.13), produc1ng the
system of equations

pr

-y

.~, 2 2 e
—u‘p_‘ NZ[ a +Y _MZ u__ .E.)z
(3.14)

'pa( Eﬁ@"rjﬁwu

For very low jet velocities, the compressibility of the gas has no
effect, and the Mach number approaches zero, while the-quantity m/xM? re-
mains f1n1te (see list of symbols used), so it appears de51rable to
1ntroduce a new symbol # for this quantlty

e i

N
r N

-Moreover, a quantity G is defined which, as w111 be seen later,
_ determines the character of the flow: :
: fwmhmuwﬂs-..hsu, R S
P = g2 3{ B2 16
l G - T + MZ (U__,-&-) ; (3.16)
Thus equation (3u14) takes on the form—;
@-8) ¢-tp=iGH,
i (3.17)
pasll- 'E‘),&{)‘“ITE
‘The system of equations (3.17). can easily be solved for 7 or ¢; a :/26.

- linear second order differential equatlon is always obtained, e. g., for
¢ it is: :

G- B)o—iio
[(U )tP ULP]

or, when written out,



; ‘P""%“‘,""G[m + '-__I-_-—]({J = 0. ;(3.19)

If the solution ¢(yj to the diffefential equation (3.18) or (3. 19) has
been determined, the remalnlng amplltude functlons are calculated from the
following equatlons :

e o (Y)2.7
f:"(l;—[T\P'._Mzul(U—‘g‘)gp-}-ﬁ'ga:%:—-]kp , (3.20)

- li 1 a'
h=lag o' - G- B o), (3.21)
ﬁ=é [G.'fp,_—,(_ﬁf%)‘pll’} (3.22)

o
4]
=
!
=
<
N
-
e
4
i
|
R
)
r~
w
N
(o)
p—

3.5 Boundary Conditions.

The disturbance equation (3.4) represents a three-dimensional, wave-
form disturbance. The amplitude q(y), the wave numbers a and y in the
x and z directions and the frequency 8 can be complex in the general case.
If B is assumed to be complex, this implies a timewise amplification or  ——
damping of the disturbance Q' at a fixed point in the flow. Such is not
observed in boundary-layer flow, however; 8 must therefore be real. A /27
non-zéro imaginary component of wave numbers a and y means that the dis-
turbance Q' in the x.or z direction undergoes a spacial amplification or
damping. - Only those disturbances are physically meaningful; however, those
amplitudes become zero at the infinite extremes of every plane perpendicular
to the direction of flow (y, z plane). This is satisfied in the y direction
by the requirement q(y = * «) = 0, whereas the boundary condition for the
-z direction is not satisfied; thus y must also be taken as real. Only a
complex o suits the experimental results, which yields an exponential ampli-
fication oxwiamplng of the dlsturbance Q' in the direction of flow for oy £ 0.

Thus in equation (3.4), one assumes

18



% i g = qr +iqi5 a = ar-kiai ; B,Yy real. 'i (3.25)

and for the real component of @', the only one of physical importance, one
obtains .

P S

‘ Te<('> = e“xlq \cos(ar$z+'yzép‘t+t) (3.26)
with uly) =orctan &,

where v (y) glves the phase angle of the dlsturbance The boundary con-
dition is

4

3.6 Formulation of the Eigenvalue Problem

The following Eigenvalue problem is defined with these homogeneous
boundary values: For a given disturbance frequency 8 and a given wave
~number y in the z direction, the Eigenvalues ar-and a, are to be determined

~in such a manner that the Eigenfunctions qa, (y) and a3 ) satlsfy the
boundary conditions (3 27).

It follows from (3.26) that the disturbance is amplified in the direction
~of flow for a; < 0 and dampened for a, > 0. For ay = 0, one obtains

neutral disturbance, the amplitude of which does not change in the direction

of flow. It should be noted hére that damped disturbances cannot be deter-
.mined at all by means of a frictionless disturbance computation, however, ng
since it is the damping friction terms that are neglected. If, for example,

“a solution ¢ = ¢r_+ i¢i and o = o +'ioci to the differential equation (3.19)

‘has been found, the conjugate-complex quantities % and o likewise represent
a solution to the equation, and it can be concluded that there must be an
amplified disturbance for every Eigenvalue with oy # 0. It is still stipu-

lated, however, that al always be considered a negative quantity, since the
physical character of the disturbance cannot be altered by the boundary
transition Re ~» o,

According to (3.26), the curves. of constant disturbance phase are
straight lines in the x, z plane:



L apx +yz =t Fi(y) = const, G, B>0. (3.08)

{

The phase velocity of the disturbance is c, = B/ar in the x direction

and B/y in the z direction. Rotation of the coordinate system about the
y axis shows that a two-dimensional disturbance is involved, the propagation
direction of which (£-axis) forms the angle 6 with the x-axis (see Figure 1).
For the wave-propagation velocity pt, in the £ direction and the propa-

gation angle O, one obtains

T = == = cC.'cos O; cos @ = =L
Py G r 2 0s @ ar (3.29)
“with .. o= a? -i‘yz

‘For the study of stability behavior of the flow relative to three-
dimensional disturbances, the propagation angle 0 of the disturbance is
‘given in place of "the wave number vy.

4.  Behavior of Disturbances at Infinite Distance |

k.1 Asymptotic Behavior of the Eigenfunctions

The asymptotic behavior of the Eigenfunctions 7 (y) and ¢ (y). for
-y » %o is found from the system of equations (3.17):

/29
2 2 42
ol = _ By 7 QYT 2= B2

with

<
3+

8
c

1
c)

—-—

H]
-—
-

]

e

1

—
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By solving the system of equation (4. 1), one obtains differential
“equations of .the same form for m and ¢. Quite generally, the asymptotic
‘behavior, of all Eigenfunctions q(y) is expressed by

f‘q"-—-w%q=0 with Q)L%:OL,? ",FE‘ Rk +1Rki; k =1; 2. (43)

: Since 0 = * YR, = w  + iw , there are two fundamental solutions to

k kr ki
(4.3). The general solution is a linear superposition of these funda-
.mental solutions: :

e ]

q_. A +wky B "wky K A and B complex constants. (4.4)

In order to satlsfy the boundary condltlons, we set Wy > 0 and then

_'jobtaln
L y—-s0 q-Be“%y B = B+ iB,
o (4.5)
- AeT? A=A +iA
y==0 o a=Ae T AR
.we obtain w]{( as
_— e 1
Wy T O -"WJ = +1/ (lpl,| R )i 59n<Rki>l/‘f(lel (4.6)
L o - o k = 1i2:
where .2 s N .
' \ 2 2
2 (9 *Y O MS - _ B y2 2(M% -2
Ry = ¢f [ oz 3 (@, C‘r) J+a; (_rk Uk_ ),
2 4.7
- M- B 1 -
R, = 2a;a 1 T O (T = o) k=12,

sgn<Ry;> =sgn<uy> =759“'<.aiﬁ?<—>M2 Uy Uy raglle



The sign of wki.is indeterminate for neutral disturbances (ai = 0). Since

we are only interested in thosé neutral disturbances which form the limiting

case of amplified disturbances (di < 0), however, we write

SgN< W ;> =sgn <M2'Gk(vﬁk—_aﬁ-)—Tk>,' k-=12 (4.8

for equation (4.7) and thus obtain-a uniform representation of the asymptotic
solution for amplified disturbances, including their limiting case, the
neutral disturbance. )

4.2 Physical Character of the Asymptotic Solutions

One can best see the physical character of the asymptotic solution by
‘substituting (4.5) into (3.26):

y—=+o R Q'>,=|B[ o X =Wy cos (apx +yz=wyiy =Bt +15),

y—=—o Re <G.l> =|Al e—lai“‘wzry cos(ar,x-h‘yz.+ Wy ~pt+ LA); 4.9

- w1th Ly = grc fan

. B
KL ; lg = arctan =
A S

Br

The curves of constant phase are straight lines in the £, y system:

, y'_-_*__uo G E-wyy—Bt Fig= cons_t,v |
' - ' (4.10)
y —= =0 C‘L‘rg+w2iy—ﬁ’c,+LA= const.

}
h
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- Nfdf'wki 5;0; one dbtains-waves entering the boundary layer, and for

W; < Osfwaves leaving the boundary layer, with the phase velocity
'i c., i S ok 12
. = 2 2 4oy 2 0 =kt (4.11)
T ey -

However, this conception is reversed for an observer moving with a.

~relative system (&', y) in the £ direction with flow velocity ﬁi

‘cos O:

cos O =

(4.12)

t

.[ . E=E.+t cos 0.



 For the lines of constant phase, one obtains, with (3.29) in the
relative system, ' : ’

y—=tee ar E'-wey +ap (T-cp)t+ ' = const,

(4.13)

Y=~ 0o ar §'+w2iy+ar(‘l~6r)t 1, = const, |

i AR e v T P L

The numerical results (c.f. Section 8 and Appendix 9.1) show that
e, < 1. Thus in (4.13) the sign of the time-dependent term changes relative

‘to (4.10), however, and the relationships are reversed. The phase velocity
cﬁh in the relative system is then ’ ‘

g e et e -

# a.(1-c.) : o

-, = 5 L 5 L 5 k=12 (4.19)

} st -+ + ' )
Evaluation of (4.8) shows that for y = - =, wys < 0, so a statiohary

observer there always sees a wave leaving the jet.

Particularly demonstrative results are obtained for the neutral dis-

- turbances with o = oy and a; = 0. Then wi is real, and for (4.6), one
‘can write ) -
’ 'a2 +y2 MZ'(- 'ﬂ)z _ V ‘akcos(a-ﬁphk)z'
Wy = % o Ty U™ ap’ T % 1_(, a, " (4.15)
. k=12

where the local sonic velocity a = f%—YM has been introduced. According to
(4.15), Wy is real as long as the relative velocity of the disturbance -

‘relative to the flowing medium is smaller than or equal to the local sonic
velocity. These disturbances are to be called neutral disturbances with
~subsonic or sonic character. In contrast,,wk is imaginary if the relative

velocity is greater than the local sonic velocity. Neutral disturbances
with supersonic character are then involved. The sign of O3 is again

determined by equation (4.8). Neutral sonic and supersonic disturbances
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are waves of constant amplitude, at infinite distance and the associated /33
‘Elgenfunctlons according to (4.5) do not satisfy the boundary conditions

(3.27):. In Section 5.1 it is shown that the neutral disturbances with

supersonic character are identical to the singular neutral solutions

mentioned in the Introduction. With equations (4.11) and (4.14), one

obtains, for the phase velocity of these singular neutral disturbances in

the absolute and relative systems,

SV S
.. (4.16)
— \ 1-¢;

For the angle o between the wave front and the negative part of the
_E-axis, moreover, one obtains

. 1 .
sin o ,_ uk Cos © - cphlL k=12, (4.17)

__Ok

P A T

~1i.e., the reciprocal of the Mach number, which characterizes the relative
motion of the disturbance with respect to the flowing medium. The singular
‘neutral disturbances thus behave at infinite distance like Mach waves
moving at sonic velocity relative to the flowing medium, perpendicular to
their length, the disturbance amplitudes remain constant, since they can
not be damped by interference effects as in the case of neutral subsonic
disturbances. The damping of the disturbances, as must be required for a
real gas, would only be achieved by 1ncorporat1ng damping friction terms

in the disturbance computation.

5. Discussion on the Neutral Disturbances
‘5.1 Determination of the Phase Velocity of Neutral Disturbances

‘ The differential equation (3.19) for the Eigenfunction ¢(y) is regular
for amplified disturbances with oy # 0 at every point y. For neutral
-disturbances with real o = aN‘and phase velocity cN = (B/a)N, however,

(3.19) can become singular at the points G = 0 and u - ey = 0. The expression

G from (3.16) can be rewritten using (3 29) and introducing the local sonic
~velocity a:

fi;H:' .25



_ T .Grcos'@)—'éph 2 /34
G(a;=0) = =75 9[1—( " M) .1 £
i th R
Wi ; cth cN cos ©

Thus the transition from the subsonic to the supersonic range of ‘
disturbance in the flow field is characterized by G = 0. This point G = 0
has no significance for the differential equation, since only an apparent
singularity is involved which occurs as the result of solving the systems
of equations (3.17) for ¢. Equation (3.17) shows that the point
u - ey = 0 is the only singularity. The neutral phase velocity for the

inequality 0'<‘CN < 1 must be sufficient for the occurrence of this

singularity. The general proof that the phase velocity of each dlsturbance
lies within the limits -

'O Sc =0 = (5.2)

could previously be demonstrated only for timewise- -amplified disturbances in
incompressible media (see Lin [29]). Adaptation of this proof to spacially
amplified disturbances in incompressible or compressible fluids yields only
the lower limit for c. (see Appendix . 9.1); to be sure, the existence of the

" upper limit for c. is verified by the results of the numerical study on the

-Eigenvalue problem (see Section 8). Equation (3.19) thus becomes singular
at the point u = Cy OT Y =Y, (the so-called critical layer) if it is not

simultaneously true that ¢(yc) = ¢C, or the expression (ﬁ'/Tjé disappears.
‘Lees and Lin [19] have shown analytically that ¢ # 0 if ¢ satisfies the

- boundary conditions. Since a constant tran51t10n from the regular, amplified
- solutions to the neutral solution can now be expected, the expression
(U'/T)' must disappear in the cr1t1ca1 layer for the neutral case.

The expression (u'/T)' disappears for the Lock profile for every combi-
‘nation of Mach number M and environment temperature T,, at least at the p01nt

u = Cgo which is given by the equation:

! (—UT—-)'% S =0 . (5.3)
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Hor, wifh~equations (2.14) and (2.27), /35

-

e oV o1 T MA-2e) 1T,
:(1 cs)[1-(1-cs)V°] (lgiM2c5+Tz)(1—cs)+cs BRI G

Flgure 7 shows curves of the function (u'/T)' versus y for various
Mach numbers M and environment temperatures T,. For M> 3 and T T, < 0.6,
'thls function has several solutions for Cg- Figure 8 shows the solution
S to (5.3) as a function of Mach number and environment temperature in a

three-dimensional representation, in which the additional solutions occur-
ring only at higher Mach numbers have not been taken into consideration.

The calculations have shoWn,‘however, that a neutral disturbance with
phase velocity,cN = Cg is not associated with every solution Cg- Section

5.2 shows for which values cg corresponding neutral solutions have been

found. From the fact that (5.3) can have several zero points, it would be
possible to conclude the existence of several amplified disturbance modes
~'and thus several neutral disturbances. Mack [32] has shown, for compressible
wall boundary layers, that this speculation is generally not born out.

For the environment temperature Té = 1 and low flow velocities with

M=0, equation (5.3) yields '

=0

””uc

prm—
1

The phaSe velocitf—eN of ‘a possible neutral disturbance is thus equal
‘to the velocity Cg at the inflection point of the boundary-layer profile.

~Tollmien [54] has shown, for Velocity:profiles with inflection points in

incompressible fluids, that a neutral disturbance with phase velocity ey = Cs

'is the only neutral solution which satisfies the boundary conditions and

- remains regular over the entire flow range. Tollmien has also shown that
 in incompressible media, the existence of an inflection point in the velocity
profile represents a necessary and sufficient condition for the occurrence

of timewise-amplified disturbances (c.f. Section 1). One may assume that

the existence of a point in the velocity profile at which the expression /36
@'/T)! d1sappears has a significance for the stability of a compressible
flow which is similar to the significance of an inflection p01nt with
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@' = 0 for an incompressible flow. This is also verified by all numeridal
; studies; the rigorous proof of this hypothesis has as yet not been found.

According to (5.1), the neutral disturbance has subsonlc character
relative to the flow if G > 0, i.e.

g

Iu—ﬁCNI < 050" (5.5)

The neutral disturbance thus has subsonic character within the entire
flow if its phase velocity satisfies the condition g :

|

— -—

< 92 " (5.6)

For two-dimensional disturbances, these limites are given by -

i E ' i ES -
5 '—l _[_I_-‘g_ = (° i

These values yield boundary curves in Figure 8 on which the associated

’;ﬁ'neutral disturbance assumes sonic character within the jet or at the outer

edge of the jets. Only the limit ey = 52/cos © has proved to be meaningful

for the numerical calculation of the Eigenvalues within the Mach and
temperature ranges studied.

. The calculations for amplified disturbances show that the phase velocity
c. for a; > 0 actually approaches a 11m1t1ng value oy It has been shown,

however, that the phase velocity ¢, is only a solution to equation (5.3) if

N
- the disturbance has subsonic or sonic character throughout the entire flow
region., Only then is the differential equation (3.19) thus regular in the
" critical layer. If the neutral disturbance, on the other hand, assumes
supersonic character at some point in the flow (this always occurred first
“at the outer edge of the boundary layer for the parameter combinations
.studied), equation (5.3) is not satisfied by u = CN’ and (3 19) becomes

singular. The results can be summarlzed as
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i Co -' < -

. (‘T:)'G___CN =0 and Cy = Cs | fo_r“ Cy = qz_/cos 0, .
| ' (5.8)
d' T SR
r—a Ll - =

Neutral disturbances with supersonic character are thus called
singular neutral disturbances (see Section 1). The associated Eigenvalues:
can only be determined approximately through extrapolation from the
neighboring weakly amplified disturbances.

5.2 Discussion on the Singular Neutral Disturbances

5.2.1 Behavior of the Differential Equation (3.19) in the Critical
Layer :

7 In the following material, the behavior of the differential equation
(3.19) near the critical layer y = Ye is to be studied for neutral super-

sonic disturbances. It is assumed that the coefficients in (3.19) can be
expanded in terms of povers of y - Yo in thervicinity of y = (see

-Appendix Section 9.2). A fundamental system of solutions can then be ~given
near the cr1t1ca1 layer (Tollmlen [54], Lees and Lin [19])

S

g =(y=-y) g, by=ye) o
o I X5

1

=Dy, logly -y ) g, (y-yc)i D=5 ()

“Here g1 and gé are power series in Yy - Y. which both assume the value of 1

:in the critical layer. The general solutionm is obtained through linear -
- superposition of the fundamental solutions, (5 9):

Ly =Vq 9 Y, 9, 3 (5.10)

According to (5.9),:¢ is regular in the critical layer, while all
derivatives of ¢ become logarithmically singular. For neutral subsonic and
sonic disturbances, D = 0 is always true, so the derivatives also remain -



regular. The logarithm occurring in the solution is defined only for posi- /38
tive arguments y > Yo According to Tollmien [54], the analytical exten-

sion of the logarithm in this. case is given by

- logly-y ) =ln|y-y,| ~im (5.11)

for'negétiye arguments y < Yoo For supersonic disturbances, all Eigen-

functions are thus also complex in the neutral case. The free constants

vy and v, in (5.10) are thus also to be made complex, i.e., A PR A

“and Vy =V, ot ini. If the solution (5.10) is resolved into a real

component and an imaginary component, one obtains for y > Ye

o =V (y --yc)g1 4=v2r[D.(yeyc)g1 n(y -y, +g2],

(5.12)
i. | o
19 = vy -ye)g vy, [Dly - yc)g1ln(y ¥e) +9,),
and for y §yc -
[ 0=viely = Jo)o+ vy [0y~ Yc 91“‘|Y el #9150l =3 ),
] . . (5.13)

Jt

=V (y yc) V. [D(y yc)c ln|y—yc!k+_92]~nv2r.D(y—y¢)g1.‘

It follows from this that ¢ remains constant in the critical Iéyef, while
-¢' makes a jump, and

l Lim [ (yc+e)'— 'y ~€) =im v,D =in 9 D._

e-0 (5.14)

For the Eigenfunction £(y) of the u' disturbance, according to (3.20),
this discontinuity in ¢' means a discontinuity in the critical layer which,
to be sure, occurs.only for neutral supersonlc disturbances.
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5.2.2 Wronskian Determinate for the Fundamental:System
In ‘the cése of a neutral disturbance, all coefficients of the differ-
ential equation (3.19) are real. The real component ¢r and the imaginary

component‘d)i of a complex solution of ¢ are thus not coupled and must

satisfy the differential equation independently of each other.. It is

possible'for-qSr and ¢i to form a fundamental .system for which the Wronskian -

determinate W of the differential equation (3.19) is not identically zero.
The Wronskian determinate of (3.19), according to Szabo [52], is then

) = - Vo -G—'r= : ‘
iW-%%'%aﬁ-wqusm) KG, (5.15)

f

1

- where K in this case is a real constant.

Since the fundamental system ¢r and ¢i is known near the critical layer,

the Wronskian determinant W in accordance with (5.15) can be calculated out
~for this solution for ¢, and information is thus obtained regarding the
constant K. If ¢r and ¢i, according to (5.12) and (5.13) are successively

-substituted into (5.15) and the boundary‘transitiohvy > Y. is carried out,

-the result is

} Wy, +0) = vy Vo, ~VpVy =IM <3 V)™,
5‘ | (5.16)

i

_ 12
Wiy -0) = Im <% v,> - g [7D.

The Wronskian determinant thus jumps in the critical layer by the amount

W(y, +0) ~Wly,-0) =7 |g,|2D.

(5.17)

For the constant K above and beldw the critical layer,; we thus have the

values

i
1




Yy, K = _:_’EEG_YLX?:, ,
N c £ (5.18)

; . -
= . Jm=<V V7>"'TE|LP| D

One can -conclude from this that for all values of y, linearly inde-
pendent solutions ¢r and ¢i can exist; on the other hand, the Wronskian

~determinant in accordance with (5.15) also disappears for G - 0, i.e., at

“the point in the flow field at which the disturbance assumes sonic .
character. Since the solution ¢(y) always remains regular at the point
G = 0 however, as was shown by Lees and Lin [19], the constant K does not /40

‘change in value at this point.

The asymptotic behavior of the Eigenfﬁnétion is described by equation
{4.5). Resolution into a real component and an imaginary component yields
a fundamental system ¢ and ¢ for y -+ e care must be taken here to see

that wi is real in the neutral case., If the Wronskian determinant is now

evaluated, it is necessary to decide whether subsonlc, sonic or supersonlc
character is present. The results are : - - - R

" Subsonic L wl=0 W= 20, Im<AB>=2w, (AB-A_B),

= | ;.:, k , < (5.19)
<=5 R |

| swpersonic 02<0 Wezo (A’ -, k=12

e e e e e e e 1

If the boundary conditions are taken into consideration for the Eigen- .
~-function (3.27), the follow1ng tabulation applies for the Wronskian

- determinant Wk
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y=wte A0 ye-e, B

‘ _Subsonic . Wq=0 Wy =0
; . (5.20)
Sonic Wq = 0 VV2 =0
S . o 2 . 2
Supersonic W«]- Wy lBl W2 =0, IAI
On the other hand, it follows from equation (5.15) that W, = KG, so

, k
equation (5.20) can be used now to provide approximate information regard-.

ing the constant K above and below the critical layer. Three characteristic

special cases of neutral disturbances will be discussed in detail.
5.2.3 Discussion of Several Characteristic Neutral Disturbances

--—~ -1,—The neutral disturbance has subsonic character at both flow edges.
For the constant K, equations (5.15) and (5.18) yield

W dm<Rve

BRARL ) Ge-- o
;o o (5.21)
- — 2
: = . _ -W..,_ Jm<\_/1V2>"Tt |‘.Pcl D =0
CYEY K="6* G '
From this follow the conditions
e, AN (5.22)
[Im<Tivz =0 and " D= G (F) |

The second condition means that the expression (u'/T)' must disappear
in the critical layer. The neutral phase velocity N is then a solution to

(5.3), and the differential equation (3.19) is regular for all y values.
-One can thus take ¢ as real without limiting generality, i.e., one-sets

Vij = Vo3 = 0. 1In this way the first condition is also satisfied.. The - -

same statement appliés for the case in which the disturbance exhibits sonic
character at both edges.

e



2. The neutral disturbance has supersonic character at both flow
edges. One then obtains for the constant K .

. y:>y l(: yy = Zﬂifjalhj:-_ S{Elgti
: c G Ge G1 ’ } ‘
(5.2
Im< Vy Vo> -1 lo; |2D Wo; |f’-\|2
yEy, K=g = 172 G =t ) N

Ge G,

. ~ The disturbance amplitudes |A| and |B| at the flow edges are then
related to the function value |¢c| by the following equation:

l s I(PC—I:Z D'=~ ()J.hlBiz _ w2||A|2 . : (5‘24)
%, GC 61 G2 .

It follows from this that the function value |¢ | in the critical layer

‘is only determlned by. stlpulatlng the disturbance amplltudes [A] and |B|.
T 7T, The neutral disturbance has subsonic character inside théwﬁét and
supersonic character at the outer flow edge. Only this type of supersonic
__disturbance occurred in the numerical calculations. For the constant K,
-one obtains

W
y>y K=g*= Ge

(5.25)
e W Im<Fyvpeme®D _wplAf
. y=Ye "G Ge Gy '
‘It follows from this that
2 Ar2 o
Im<Vivo> =0 and - TI%IZD o 9plAl7 (5.26)
L - G, Gy T
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From the first condition, one again concludes, as in the first example,

that e.g. it is possible to set Vig = Voy T 0 so that ¢ is completely real

for y >‘}C, while ¢ remains complex for y S‘yc. The second condition states

that the disturbance amplitude |A| at the supersonic edge again determines
the function value ]¢c| in the critical layer. The sign of the expression
(ﬁ'/T)é in the critical layer can also be determined from (5.26): Wy is

negative due to the way in which the signs afe established in (4.8), and G'

‘is likewise negative, due to the supersonic character of the disturbance,
so D and thus (u'/T)' must also become negative in the critical layer.

According to Figure 7, it follows that cN > S must always be true for the

parameter combinations M and T, which were calculated (cf. equation'(S.S)).

2
The calculations have shown the correctness of these results.

5.3 Energy Balance of the Disturbance Motion for Neutral Disturbances

Additional insight into the character of the neutral solutions is
obtained from an accounting of the disturbance-motion energy. The same
considerations have been applied by Lees and Lin [19] for the compressible
wall boundary layer. If one calculates the substantial variation in the
timewise mean value of the kinetic energy of the disturbance, from the -
energy equation of mechanics, one obtalns in a dimensionless representation
(see Appendix Section 9.3), T T e e ST

p R _a L) (5.27) /43
az ‘

puv

|2 I2+ |2
e e e

D.;g_

1_1(
yW

Betchov and Criminale [2] provide a clear physical explanation of the-,
terms on the right side of this equation. The first term characterizes the
energy transfer between the principal flow and the dlsturbance motion,
fresultlng from the Reynolds shear stresses |

| — (5.28)

The energy transfer remains limited to the boundary'layer, since only

~ there is the vortex strengthu' # 0. For o> 0, the principal flow provides

energy for the disturbance motion, and for_'rR

motion is transferred to the principal flow. The second term characterizes
the loss or gain in kinetic energy of the dlsturbance wh1ch is connected

< 0, energy from the disturbance

S IR T R



with a particle transfer among areas of higher or lower pressure.

/ing to Lees and Lin [19], this term is in particular a measure of the

disturbance energy radiated away via sonic waves (see Appendix Section 9.5).

For neutral disturbances, the substantial change in disturbance energy.
must be zero to comply with definition.

Accord-

This is verified with the aid of
results from the linearized stability computation in Appendix Section 9.3.
For neutral subsonic and sonic disturbances,

only the sum of the two terms becomes zero.
disturbances, an energy transfer between the principal flow and the dis-
turbance motion takes place via momentum exchange for neutral supersonic
disturbances, the direction of the transfer being determined by the sign
With the results of the linearized

of the Reynolds shear stresses T

R

the terms on the rlght side of
(5.27) dlsappear individually, whereas for neutral supersonic disturbances

Thus, &s for amplified

stability theory, according to equation (5.25) and (9.16) one obtains,
the type of supersonic disturbance covered as Example 3 in Section 5.2.3,
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Oniy in the outer portion of the boundary layer, 'y > <: Yoo is fluctuation
energy removed from the principal flow by the Reynolds shear stresses TR
the energy is brought back in by the formation of a corresponding distri-
bution of pressure fluctuations in the principal flow. It should be taken
into consideration that the result for TR found by Mack [32] for wall

boundary layers can be converted to free boundary layers. The graphs shows
this result schematically. One can see that .fluid friction makes the
singularity in the critical layer disappear and TR becomes zero at the outer

“edge of the boundary layer.
5.4 Behavior of the Eigenfunctions in the Critical Layer

It has been shown that the Eigenfunction ¢ remains regular for all
neutral disturbances, whereas the derivatives of ¢ remain regular only for
neutral subsonic and sonic disturbances and become singular for neutral
_supersonic disturbances. This result applies for two-dimensional and three-
"dimensional disturbances. S ~
The behavior of the remaining Eigenfunctions, relative to neutral dis- /45
turbances, can be seen from equations (3.20) through (3.24). The Eigen- T
functions © and r for the temperature and density fluctuations become
singular relative to any neutral disturbance in the critical layer, as long
as T' does not dlsdppear which generally is not the case, however The

Elgenfunctlons £ and h for the velocity fluctuations in the x and z directions
become singular for all three-dimensional neutral disturbances. Moreover,
f becomes singular for all neutral disturbances with supersonic character.
‘Only the Eigenfunction 7 for the pressure fluctuations remains regular in
all cases., |

For an incompressible, free shear layer with a special velocity profile,
Stuart [51] was able to give an exact solution to the nonlinear disturbance
equation for a neutral, three-dimensional disturbance which is regular
throughout. From this solution it is possible to see that the singularity
which the solution to the linearized disturbance equation exhibits in. the
.critical layer is obviously only a result of linearizing the equation. It
is therefore to be supposed that in the compressible case, the singularity
- of the neutral Eigenfunctions is likewise to be attributed to the lineari-
‘zation of the equations, at least for subsonic disturbances. .

In the case of the Elgenfunctlons ® and T for the temperature and
density fluctuations, it is possible that the- 51ngu1ar1ty does not arise from
linearization of the disturbance equation, but rather is a result of
‘neglecting the effect of heat conductivity upon the disturbance motion. For
Prandtl numbers close to 1, however, the thermal-conductivity term in the
energy equation, like the dissipation term, is on the order of magnitude of
Re"l, .It thus appears as though the effect of thermal conductivity upon the
stability of free boundary layers can be neglected in the same manner as the
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 friction effect. The additional® singularities which occur for neutral
supersonic disturbances, on the other hand, are possibly to be attributed
to the neglect of frlctlon since the dlsturbances in this case do not dis-

appear at infinite dlstance i z

} i
6. Stabn]uty Behavior of a Free Shear Layer Relative to Long-Wave /46
Dlsturbances . :

6.1 Effect of the Velocity Profile with Long-Wave Disturbances

v The stability behavior of a free shear layer relative to long-wave
disturbances can be described analytically with relative ease, since the
Eigenvalue equation can be given in closed form. Drazin and Howard [8]
compared the stabilities of various velocity profilés in plane, free shear
layers relative to two-dimensional, timewise-amplified disturbances in
incompressible media. It was found that the various profiles exhibit similar
stability behavior relative to long-wave disturbances, i.e., the amplifi-
cation of the disturbances and their phase velocities show approximate
agreement. They concluded from this that the form of the velocity profile
has no effect upon the stability behavior of the disturbance if the dis-
turbance wave length is large relative to a characteristic length of the
profile (e.g. the boundary-layer thickness). Their explanation can easily
be extended to cover three-dimensional disturbances and is independent of
whether the disturbances are amplified timewise or spacially.

Since the wave number of the disturbance is inVérsely proportional to
its wavelength, long-wave disturbances are notable'for small wave numbers
1 ar. According to (3.29), the resultant wave number is ar =V arz + v2, so
_ for long-wave dlsturbances the wave numbers o, and v in the x and z directions
must be small. Since the phase veloc1ty in the direction of flow, B/a s

‘remains limited, the frequency B must likewise assume small values for small
‘wave numbers o Long-wave disturbances are thus characterized by low

vfrequenc1es B and small wave numbers o and y. If dimensional quantities

.7rare again introduced - for the velocity profile u(y), the disturbance frequency
B and the wave numbers o and.y, then

» ' U- RS T =
aryM=ardR), RYEB R 9TEs Y [

I__....._ — 4

(6.1)

If, for fixed disturbance frequency B8* and fixed disturbance wave numbers/47
- a* and y*, the reference length 1* is made to approach zero, the dimension-
less velocity profile u(y) becomes a discontinuous profile (plane vortex
layer)which is described by | .

UL T . NV SR
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The dimensionless quantltles B, a and Y- approach zero of fixed B* a*
and y*, while the expressions
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(6.3)
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 are not affected by the limiting transition 1* - 0. The stability behavior

- of the velocity profile u*(y*) relative to three-dimensional disturbances

“at low disturbance frequencies B* and thus small disturbance wave numbers

" a* and y* can therefore be obtained from'a stability study of the vortex

“layer. Since the vortex layer possesses no characteristic length, the

“Eigenvalue equation can only remain a function of the quantities B/a and
y/o, which according to (6.3) are independent of the reference length.

6 2 Elgenvalue Equatlon for the Compressuble Vortex Layer

In the follow1ng, the stab111ty behavior of the compre551b1e vortex
layer is determined relative to spacially amplified, three-dimensional
disturbances. A check is then made as to how well the results for the
vortex layer describe the stability behavior of the Lock profile being
studied for low disturbance frequencies. For the vortex layer, u' = u'' = 0
-~ for y # 0, so the differential equation (3.19) for Eigenfunction ¢ assumes
(cf. equation (4.3)) the form

o =0 - 1.9 (6.4)

- If one takes into consideration the boundary conditions (3.27), ¢ (£ «)
-0, one obtains the following solution for ¢ (cf. equation (4.5)):

’ e L T e SO

T,y
3 = A 2 ,

A and B complex constants, (6.5)

,where-wk'is determined from equation (4.7) and (4.8); in particular, again
wkr > 0. Both solutions must satisfy the following relatlonshlp condltlons

at. the vortex layer (y = 0):

EOREN! (SR



"= 1. The velocity component normal to the deflected vortex layer must
be the same on both sides of the vortex layer. This is identical
to the requirement that the vortex layer be formed by the same
f1u1d particles at all times.

2. The pressure must be equal on both sides of the vortex laye\

i

_ These relationship conditions lead to a linear, homogeneoﬁs system of
equations for the free constants A and B which has non-zero solutions only
~ for certain Eigenvalues B/o = £(M, T ,» ©). These Eigenvalues B/a are

.-solutions to the so-called Elgenvalue equation.

For the equation for the disturbed vortex layer, one can set

CHxyzt) =y (x,z,1) =0  (6.6)

. twith 5 n=C EXP [i(ax +yz - Bt)], C = const.

i

i
]

"-The first condition, that the vortex leyer always deforms by the same fluid
particles, is then identical to the requirement

U U

| DH_ aH 8H . 8H . aH ,
. DtTat TUax *Viay TWag =0 (6.7)

\

) If the disturbance equation (3.2) is substituted into (6.7) and the
‘equation is linearized in terms of the disturbance quantities, the result is

e e T T t

B From thls one obtains, with equatlons (3 5) and (6.6), the first
" relationship condition

9 (y=0) _ 9ly=0)

- - : (6.9) /49
- W % u, - g— !

The second condition, that of pressure equality on both sides of the
vortex layer, is identical to the requirement that the amplitude functions
T and ﬁ for the pressure disturbances in both areas be equal at the vortex

R - U d; e e

layer. Thus from (3 17) the second relatlonshlp condltlon is found to be
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) ) ,, 316_0;\91-(y=0) Y -a o' ly =0).
_— 1 G

. (6.10
2 2 ! ) |

If the solutions (6.5) for Eigenfunctldﬁ ¢ in the two areas are substi- ‘

~ tuted into equations (6.9) and (6.10), two equations are obtalned for
’ determlnlng the constant A and B: .

B =
G, -5
S (6.11)
B LB
Mg+ M d =g
Tyu, Ty,

This homogeneous system of equations has nontrivial solutions for A
“and B only if the coefficient determinant disappears. From this one ;
~obtains the Eigenvalue equation ' i

‘, _ 2 _
l (Ul*%) T (U_;}‘g)z -0 (6.12)
e T1 (.01 Tz (02 e

}:or, written out with equations (3.16) and (4.3),

 a-g2 [ -
' 7 = (6.13) . /50
;Wt}-wmﬁﬁ Vtgaw_wwm =

1’

6.3 Solutions to the Eigenvalue Equation

‘The solutions to the Eigenvalue equation have been discussed by Pai.[41];
Miles [39, 40] and Lessen, Fox and Zien [23, 24] among others. For low

velocities with compre551b111ty effects approachlng zero (M = O), equation
(6.13) assumes the form

| 6.14
:u—%ﬂ+%%ﬂ=m_ .14



';i‘erifhe angle of incidence © of the disturbance as given”b& (3.29) no
longer occurs in the Eigenvalue equatlon One then obtains. for the
Eigenvalue : S : !

é % _1*73 -

(6. 15)

Here, that solutlon is selected which leads to a negative oy for

spacial amplification. The incompressible vortex layer is thus unstable
‘relative to all disturbance frequencies, as has already been shown by
Rayleigh [43]. The Eigenvalue equation (6.13) is generally not soluble

_in closed form for arbitrary Mach numbers M and environment temperatures

T2, For two-dimensional disturbances, Miles [39] gives the closed solution.
for two special cases. For Té = 1, he finds the Eigenvalue as a function of
‘Mach number to be ' 7

P i

_ ’ 16)
! E - l. 33 1/ -| - _l ! (6 ) ;
a2 %1/" 2 0 E
s e . o o - ‘”i
Accordlng to (6 16), the compre551b1e vortex layer for T, = 1 becomes /51

2 L=
. more and more stable with increasing Mach number M (for spac1a1 ‘and time-
wise amplification) and is stable relative to all disturbance frequencies
for M > 2 V2, Mlles also finds that for arbitrary T 29 the compressible

vortex layer is stable relative to two-dimensional disturbances for

f :
| M= 1/313/2
LM (1 +5 )

U S P |

(6.17)-

The solutions to equation (6.13) haveibeen determined numerically for

arbitrary combinations of Mach number M and enviromment. temperature T 2 and

‘two-dimensional disturbances (y = 0). From the complex solutions for B/a,
~it is possible to obtain the phase velocity and the degree of amplification
for disturbances amplified spacially and timewise by making either o or B
- complex.” Figures 9 and 10 show the wave number ar/B and the amplification

bparameter -0, /B forftwo—dimensional, Spacially amplified distrubances as a
function of Mach number M and environment temperature T, in three dimensional

2
form. One can see that the ampllflcatlon increases sharply in the reglon

42




'df’loﬁﬂMaph numbers and low environment temperatureSJ Fdfvfé‘;wé; the

environment temperature has only a slight effect upon the amplification
parameteér. With increasing Mach number, the amplification parameters
decrease continuously at constant T2’ i.e., the compressible vortex layer

becomes more stable with increasing Mach number. Finally, as a certain
Mach limit, given by (6.17) is exceeded, it becomes stable relative to all
disturbance frequencies. In both figures, those ' points are marked at which
the disturbances within the range 1 (y > 0) or the range 2 (y < 0) first
assume supersonic character with increasing Mach number. These points are

connected by the 11nes u; - c.=ay and c. = a2 One can see that the

neutral disturbances in both ranges have supersonic character. This is )
~informative, since the Elgenvalue equation (6.12) can only have real 8

‘solutions if W) and w, are imaginary and opposite signs result from equation

~ .(4.8) for the two of them,

For two-dimensional disturbances (y = 0), it has been shown that it makes
"no difference to the solution of the Eigenvalue equation (6.13) whether one

uses disturbances which are amplified timewise or spacially. If three-
dimensional disturbances (y # 0) are taken into consideration, on the

other hand, this differentiation is important, since the ratio of wave o
numbers Y/a is real for timewise amplification and complex for spacial /52
amplification. For timewise-amplified disturbances, i.e., o real, it is
possible to substitute the dlsturbance angle ) glven by equatlon (3 29) into
(6.13): - : R St

- 1
a? cos2e

(6.18)

The solutions B/a (M, Té) to equation (6.13), calculated for two-

dimensional disturbances, are thus also valid for timewise-amplified three-
_ dimensional disturbances if the Mach number M is replaced by Mcos®. In
particular, the compressible vortex layer, according to (6.17), is stable
.relative to timewise-amplified disturbances (Miles [40]) for Mach numbers:

s ] =1/3 3/2..  (6.19)
itM'—'cosG)(1 T2 )

, For spacial amplification, on the other hand, the solutions to the

-Eigenvalue equation (6.13) must be calculated anew as functions of the
disturbance incidence angle 6. Figure 11 shows the amplification parameter
- ai/B for spacially amplified disturbances and an angle of incidence of




® = 45°. The stability limit is reached only at a higher Mach number than
given by (6.19) for timewise amplification. . |

Figure 12 shows the dependence of the spacial amplification - a;/B %
. upon the angle of incidence © of the disturbance for various Mach number M

and enviromment temperatures Té. The stabilizing effect of the Mach number

‘upon the compressible vortex layer disappears with increasing angle of
incidence 6. For 0 > 45°, the Mach number even has a pronounced destabiliz-
.ing effect, particularly for low environment temperatures. The amplifi-
cation reaches a maximum for a certain angle 0, which lies between 45° and
70° for the parameter range under study. '

At the beginning of this section, the hypothesis was proposed that the
form of the velocity profile in an arbitrary free shear layer is of no
-consequence if the disturbance wavelength is large relative to a character-
‘istic profile length. Drazin and Howard [8] have verified the hypothesis
for timewise-amplified disturbances in compressible media. For spacial
~amplification, the stability behavior of the Lock profile relative to long-
wave disturbances or low disturbance frequencies was compared with the
vortex-layer behavior. Figure 13 shows this comparison for several combi-

-nations of Mach number M and environment temperature T, for two-dimensional

2 L=

disturbances. Agreement is satiSfactdry for disturbance frequencies
B < 0.005. ' '

‘7. Numerlcal Treatment of the Elgenvalue Problem
7;] Transformation of the Initial Equations

In Section 3.6, the Eigenvalue problem was formulated in the follow1ng
“manner : For a given frequency B and a given disturbance angle of inci-
dence 0, the Eigenvalues o, and a, are to be so determined that the

.Eigenfunctions (y) and q. (¥). safisfy the boundary conditions (3.27). To
9y 93

‘this end, one could start with the differential equation (3.19) for the

. Eigenfunction ¢, which is linear and second-order. Through resolution into
- real and imaginary components, it is possible to obtain from this a system
‘of coupled differential equatlons for ¢ (y) and ¢ (y). For the numerical

-treatment it is: de51rab1e (see Betchov and Cr1m1na1e [2]), to transform 1
. equation (3.19) into a first-order differential equatlon by 1ntroduc1ng a
.new variable & = ¢'/¢; to be sure, the equation is not linear, but is of the
~Riccati type. However, it is possible to reduce the system of equations
(3.17) for the Eigenfunctions 7 and ¢ to a first-order differential equation
of the Riccati type directly, by 1ntroduct1ng a new variable x defined as
- follows:

(7.1)
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- The advantage of the x transformation relative to the ¢ transformation
becomes apparent in the\gumerical treatment of neutral supersonic dis-
turbances. As was shown in Section 5.2, ¢' becomes singular in the critical
‘layer, whereas ¢ and 7 remain regular For neutral supersonic disturb-

ances, therefore, ® is singular in the crltlcal layer, and x remains regular ;
(see Appendlx Section 9.4). | .

- - | |
With (7.1), the system of  equations (3.17) becomes a differential }
equation for x:

]
i 0- 6 Gy + ! |
! | XI= ’CLZ .,.’-.—;l:--—..,. — X --’%i’ﬂw . (7.2) ‘
e e d |

In Section 4.1 it was shown that the asymptotic behavior of all
. Eigenfunction described by (4.5). The function x from (7.1) must therefore
~approach a constant value asymptotically for y -+ * «, and its derivative
must disappear. Equation (7.2) thus.yields

yk a? (g, - p/a)
Tk

y=foeo  x, =(1 s xps0 k=2 0.3

Vfwhgrerthe signs are again spgcifiedigﬁch thﬁt-wkr-> Orandrﬁhei;&gn of:wki is
determined by (4.8). : ' ' .

It is desirable in the numerical treatment of the Eigenvalue problem
to change the independent variables in equation (7.2). According to Section
2, the velocity profile u(y) becomes independent of the Mach number M and
the environment temperature T2 as the result of introducing the new

variable Y in accordance with equation (2.16). If the differential equation .
. (7.2) is transformed using (2.16), the result is s

b dx _ 2¢= _By_,GTx + @y 7.4

‘The Mach number M, the environment temperatureT},,and.the.isentropie

exponent k are now contained only in the expression G:T (see equation (2.14) -

and (3.15)). The universal velocity profile u (y) is given by equation
“(2.27). : - . '




7.2 Calculation of the‘Eigenvaluee

Calculation of the Eigenvalues ai and o for the dlfferentlal equatlon

(7.4) for given values of B and 0 is carrled out using the method given by ,
Michalke [38]. The velocity u is substituted into (7 4) as a new 1ndependent

variable; this reduces the range of 1ntegratlon o Y < o to , ‘

u, < < u < u1 with u1 = 1 and u, = 0. = . | !

' | |

One obtains :

d . 11 2g-By -y SIXEN(D)

du. Nﬁﬂla( al "X G—% ]’ (7.5)

where, according to (2.27), 1
IN(g) =38 - zab(1—u)[1 (1- u)Vb] 7.6)

=N
B =

i

o 2 . e
X o2lu-p/a) |

| 7.7
G=G12 Tw G=lyy

The derivative of the function x (i) at the boundaries must be determined
in accordance with 1'Hospital's rule, since in (7.5) both the bracketed

-expression and the function N(u) disappear, accordlng to (7.6) and (7.7) for
cu

- 1S 1 and u2 = O % »;
dy 2a2(u ) x[x —%r |
du U=G12 '%(U E)"’ZXGT ﬁ:tl.],z (7'8)

i

Resolution of (7.5) into real and imaginary'components again leads to
a system of coupled differential equations for Xp and X3 Correspondingly,

the boundary values Xp (u 2) and X4 (u 2), as well as the derlvatlve at the

- boundaries, are obtalned through the resolutlon of equations (7.7) and (7.8).

a5 o
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The dlfferentlal equatlon (7 5) is now 1ntegrated stepw1se beglnnlng at

the two boundaries u, = 1 and u, = 0, up to a value U, < Uy <uy for two

‘arbitrary pairs of values o = a, + iai, and in each case the complex

.difference

Aa,a:) = x (T, "‘0)")((50“_0),«2 0.9

which must become zero for the Eigenvalues dr and oy being sought, is calcu- ‘/56
lated. For the given pairs of values 2 and ¢y the differences Al and AZ’

from which an improved pair of values o, is obtained by linear interpolation,

3
are calculated from-equation (7.9). Through renewed integration of the

differential equation (7.5) with the pair of values Gy the associated :
" difference A3 is obtained, A further improvement in o results from repeated |

parabolic interpolation until the difference |A| < ¢ with e = 10_7'[x(ﬁo)|.

- The integration is accomplished using a Runge-Kutta method with automatic
-step selection. The calculations were carried out on a digital computer
with nine decimal places : ; 7 f

'"For’caIculating the Eigenvalues of the neutral disturbances with di”é 0

as the limiting case of amplified disturbances, it is again. necessary to
‘differentiate between subsonic, sonic and supersonic character. As was

‘demonstrated in Section 5.1, the phase velocity Cy of the neutral disturb-

-ance in the .direction of flow is a solution to (5.3) only for subsonic

and sonic disturbances. In this case, the solution curve x(u) to the
differential equation (7.5) is regular with all derivatives in the critical:
- layer and real over the entlre range of integration, i.e. > X3 (u =0 (see

Appendix Section 9.4). The boundary values given by (7.7) and (7.8) for the -
solution x(u) are likewise real, since wﬁ 20 for neutral subsonic and i
sonic disturbances. Slnqe ‘the neutral phase velocity cy = BN/aN can be

“determined from (5.3), only the neutral wave number o, still appears as an

N

‘Eigenvalue in the differential equation (7.5). The Eigenvalue ay can be

calculated using the method given above as the functlon of the disturbance
angle of incident 0. ;

In Section 5.2, the study of neutral disturbances with supersonic

character showed that their phase velocity ¢y can not satisfy (5.3), so o

.the differential equation (7;5) becomes singular in the critical layer. 1In
Appendix- Section 9.4 it is shown that x remains regular in the critical




vlayef;'WHereas'all dérivatives'bf X become singulér'lbgarithmiéallyl More-

over, x must also be taken as complex for neutral supersonic disturbances.
Due to this singular character of the solutions, these neutral disturbances
~cannot be calculated exactly. The Eigenvalues of the neutral supersonic

disturbances can only be determined approximately through interpolation from

the neighboring, weakly amplified disturbances, whose solution curves’
.~ x(u) are always regular

7.3 Calculatyon of the.Eigenfunction

~ The Eigenfunctions associated with the Eigenvalues were determined by
integrating the system of coupled differential equatlons (3.17) for the
complex Eigenfunctions m(y) and ¢(y). Here, too, it is de51rab1e to
_introduce the independent variable Y, given by (2.16), in place of y, since
the velocity profile u(y) is 1ndependent of the Mach number M and the
environment temperature T2 ~To be sure, only a plot of the Eigenfunctions

versus y is physicaily meaningful, so the curve of y(Y) must likewise be
determined from (2.16). The following system of equations must then be
-integrated: L Frle vouros

e ? - ugg " _ o
: (_;]_.,E _ iGTw. + day ¥ (7.10)
{ody a-8 "
- . a :
i"gjz"= _ ;
ay T

) Throughrresbiution of the first two equations of (7.10) into real and
“imaginary components, a system of four coupled first-order d1fferent1a1
_equations is obtained for the Elgenfunctlons

3 E (V) K (V) g ly)  and Lo v).

The system of equatlons (7.10) has three free constants, of which one,
according to (2.16), is determined-by the requirement y(Y = 0) = 0, whereas
‘the others can be chosen arbitrarily. Consequently, the 1ntegration must
start'at Y = 0. The complex function values.7(0) and ¢(0) are, according to
- (7.1), linked by the condition :
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T sy

The complex function value x(0) is obtalned by integrating the differential

equation (7.5) from one of the twe boundaries ul or u, to the value

u(Y 0). If, corresponding to the two free constants, ¢r (0) =1 and
IO) = 0 are now chosen, the integration begins at Y = 0 with the follow-

1ng values for T, $ and y:

; (0)- ap(O) 7 (0) = (O)Tt(O) X_r(O) (0 =0 . apy

b
1
|
i
|
|

)
i
|
{
I

The integration is carrled out in the p051tlve and negative Y d1rect10nsr

until the asymptotic behavior of the Eigenfunctions described by (4.5) is
~obtained. The integration again was carried out using a Runge-Kutta
method. The Eigenfunctions f and © were determined simultaneously with the

1ntegrat10n, in accordance with (3.20) and (3.23), while 'the curves of h and

r were not determined. ‘In the next section, the numerlcal results wh1ch

were obtainéd are discussed. e e

8. Discussion of the Numerical Results

i
'

i

The stability behavior of the Lock profile relative to three-dimensional

spacially amplified disturbances was studied for Mach numbers O< M <3 and
‘environment temperatures 0.6< T. < 2 for air with « = 1.4. Environment

‘temperatures T2 < 1 mean a cooled free jet “and T2 >1, a heatedrfree jet.

" The largest portion of the numerical studies were limited to the stability
. of the Lock profile relative to two-dimensional disturbances (6 = 0).

Consideration of three-dimensional disturbances alters the stab111ty behaV1or

only quantltatlvely, rather than qualltatlvely

Figure 14 shows the amplification parameter ;di,for two-dimensional

~disturbances as a function of disturbance frequency B8 and Mach number M for
‘T, =1 in a three-dimensional representation. For M = const., the amplifi-

"cation increases with increasing frequency B, up to a maximum value, then

drops off again and finally becomes zero as the neutral disturbance frequency

4 BN is reached. The neutral disturbances, as a limiting case of amplified
diéturbances, are joinediby the lines a; = 0. The Lock profile exhibits

 stable behavior relative to disturbanee-frequency B'>'BN. The stability

T ' 49T
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behavior of the Lock profile relative to low frequencies has already been
determined in Section 6. The amplification parameters . -a. /B(M 'T , 9)
calculated there for the compressible vortex layer are 1dent1ca1 to the slope /59
- (5, /BB)M T o of the ampllflcatlon curve for the Lock profile at the point
, *h2? R " '
B = 0. . i ? ]
. . s i i
One can see that the maximum amplification is greatest for M = 0 and
falls off sharply with increasing Mach number. The region of amplified
frequencies B is likewise greatest for M = 0 and becomes smaller with
increasing Mach number. The Lock profile thus becomes more and more stable
with increasing Mach number. Since the phase velocity c. does not exceed

jthe value of 1, all disturbances have subsonic character at both edges of
the boundary layer M < 1. If the Mach number is increased at constant
disturbance frequency, the disturbances first assume sonic character at the

outer boundary-layer edge, corresponding to reachlng the line c. = a2. In

‘particular, ey = a “applies for the neutral dlsturbance on this line. If

‘the Mach number is further 1ncreased then ¢, > a2, i.e., the neutral dis-

N
turbances are now singular and can only be calculated approximately: -The
‘singular neutral disturbances are connected-via the dashed line o, = 0. One

‘can see that the region of amplified frequencies becomes smallest for those
Mach numbers for which the assoc1ated ampllflcatlon curve ch (B) leads to

the neutral sonic dlsturbance with ¢, = a For hlgher Mach numbers, the

. N 27
',frequency range of amp11f1ed dlsturbances agaln increases slowly.

After the line cr’= a, is passed on the lines of constant disturbance

2
frequency B8, all disturbances have supersonic character at the outer edge

of the boundary layer. For disturbance frequencies 8 < 0.02 and Mach
numbers M > 2, moreover, the disturbances assume supersonic character inside

the jet. ThlS is characterlzed by crossing over the line up - c. = al In

the region of supersonic dlsturbances, the amplification parameter is , ‘
relatively small, and a rise in the Mach number has only a slight stab111z1ng
effect. Characteristic of the supersonic region is the fact that the '
amplification curves —ai(B) can exhibit two relative maxima for M - const.

‘The maxima in the amplification curves have been connected by dashed lines.

Figures 15 and 16 show the amplification parameter -ai”for the

environment temperature T, = 0.6 (cooled free jet) and Té = 2 (heated free

2

jet). Comparison with the results for T,

fdisturbances is increased sharply by cooling the free jet and the: regioniof
amplified frequencies is- reduced. Heating of the free jet has the effect of /60

weaker amplification of the dlsturbances, while the region of amplified -
7frequenc1es become 1arger The cooled free Jet (Flgure 15) eXhlbltS a '

= 1 show that the amplification of

SO [ Y
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dlscontlnuous 1ncrease in the range of ampllfled frequenc1es for 1ncrea51ng

"~ Mach number near the neutral sonic disturbance, with CN = a2 This dis-

continuous rise is also somewhat less marked for T2 = 1, but it is no longer :

perceptible: for Té = 2. A more exact study shows that this pronounced change;

in the neutral disturbance frequency is caused by the occurrence of a .
second disturbance mode which is generally amplified more weakly than the
first mode, represented in Figures 14, 15 and 16, and thus was not shown.
Apparently the second mode also has an appreciable;effect only upon the
stability behavior of the cooled free-jet boundary layer. The lines B =
const. were therefore dashed in the reglon of neutral sonic disturbance,
since they only provide an approximate representation of the true curve. ;
The characteristic features of the second mode are discussed below. !

t

Figures 17, 18 and 19 show the wave number o of the two-dimensional

disturbances as functions of disturbance frequency B and Mach number M for

the environment temperature Té =1, Tér= 0.6 and T, = 2. The disturbance

‘wave numbers o /B(M T 0} calculated for the compre551b1e vortex layer are

1dent1ca1 to the slopes (30, /BB)M T 0 of the curves for g = 0. Figures
T > 2 3 - .
20, 21 and 22 show the phase veloc1ty c. B/ocr of the disturbances as a

function of dlsturbance frequency B and Mach number M for the environment

temperatures TZ,‘ 1, = 0.6 and T, = 2 in a three-dimensional represen- _

tation. For B = 0, the phase ve10c1ty c.as a function of M and Té could

‘again be taken from the stability- study results for the compre551b1e vortex
layer : j i

The results up to now show that the principal flow being studied is
stabilized by increasing the Mach number and the environment temperature; at
least for low Mach numbers. If the vortex strength Q(y) = -du/dy of the
principal flow is calculated for various combinations of M and T2; one sees

that the maximum vortex strength of the profiles is likewise reduced by
increasing the Mach number and the environment temperature (see Figure 23)
- It is apparent, however, not only that the vortex-strength distribution is : /61
responsible for the instability of the free boundary layer, as in the case

~of incompressible flow without thermal conductivity, but also that the

density distribution p(y) at the temperature distribution T(y) have an

appreciable effect (see equation (2.13)). For the case M » 0, therefore, an
attempt was made to give special treatment to the effect of theuvortex—

strength distribution and that of the density distribution. Initially, the
effect of various density distributions upon the stability of a free

boundary layer with a particular velocity profile was studied. The velocity
-profiles for M = 0 and Té = 1 was chosen for this. Figure 24 shows the

~amplification curves for three different temperature profiles (T' = 0.6, 1,

2). One can see that even at Mach number M = 0 heatlng the boundary layer



 has a stabilizing effect. In general, the vortex-strength distribution and
_the density distribution are coupled via the velocity and temperature pro-
files, however. According to Figure 25, this boundary-layer stabilization
effect is increased even more by heating, due to coupling of the veloc1ty ,
and temperature profiles. ‘ 7 ! §

The effect of Mach number upon the amplification parameter —ui is ‘

5represented for constant environment temperature T, in Figure 26 for the

2
constant disturbance frequency 8 = 0.08. It is found that the free jet is
‘ “made very much more stable by heating (raising T. ) for Mach numbers M < 1.5,

whereas heating ‘has the opposite effect for higher Mach numbers. Figure 26
also makes it clear that a rise in Mach number has a great stabilizing
effect for M < 1.5; for higher Mach numbers, the stabilizing effect is

~slight. The dashed curve shows the amplification of the second mode for T2 =

0.6. For other environment temperatures, the second mode has not been cal-
culated.

The effect of the 1sentrop1c exponent K for the flowing gas upon the
‘stability of the flow is shown in Figure 27. In free boundary layers in
~gases with ¢ = 1,10 (e.g. freon), the amplification parameter for two-
~dimensional disturbances is generally greater than in air. The deviations
. _increase with increasing Mach number and decreasing enviromnment temperature.

- In the follow1ng, the characteristic features of the second disturbance
- mode are explained. This second mode always occurs around the neutral

- sonic disturbance ey = @y and 1s limited to & narrow range of Mach numbers.

~Figure 28 ‘shows the amplificatlon parameter *al ‘as a function of disturbance

l frequency B for the first and second modes in the Mach-number range

1. 4-< M<< 2 for the environment temperature T 2 = 0.6. Figure 28 thus repre—

“sents a magnified section of Figure 15; the plot here is two-dimensional,

~ though. For the environment temperature under study, T2 = 0.6, the'second

mode first occurs at M ~ 1.54 as the Mach number is increased. The second
mode is-amplified only within a small frequency range, which includes the
_corresponding rieutral disturbance frequency of the first mode. The amplifi-
cation curve - oy (B) of the second mode thus possess two neutral disturbances

with BN > Q As the Mach number is further increased, the second mode 15

.amplified more and more. sharply, and the amplified frequency range becomes .
wider. The corresponding amplification curves of the first and second modes
intersect for Mach numbers M < 1.64. For a particular disturbance frequency
B, therefore, the disturbances of both modes experience the same spacial

_amplification; however, the two disturbances are propagated with different
phase velocities. Figure 29 shows the assoc1ated phase velocity for dis-
turbances of the first and second modes. For M< 1.64, all disturbances of

" the first mode have subsonic character over the entire flow region, whereas
all disturbances of the second mode assume supersonic character at. the outer

U e — UL R G e e
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‘boundary-layer edge.. The neutral disturbances of the first mode therefore

lie along 'the line ey < 2y for le 1.64, whereas the two neutral disturb-

ances of the second mode lie along the line oy > 52 The line ey > 52 was

‘dashed in to indicate that 51ngu1ar neutral disturbances are involved. »
: | _ {
The two modes fuse for Mach numbers M > l 64, and simultaneously split
up again. Figure 28 shows that the amplification curve for the two modes
no longer intersect following the transformation process. It is character-
istic of the transformation process that the neutral disturbance frequency
of both modes changes discontinuously, a fact which has already been pointed
out’ in the discussion on Figure 15. The neutral disturbance of the first
mode assumes supersonic character for the first time here, while now the
“second mode now possesses a neutral subsonic and a neutral supersonic dis-
turbance for M > 1.64. The second mode falls off very sharply for M > 1.64.
For M = 1.728, the neutral phase velocity °N calculated in accordance with

{

(5.3) is just equal to the sonic velocity 52; i.e., for Té = 0.6, there are

‘regular neutral disturbances only for M < 1.728. Since the second mode
‘possesses a regular neutral disturbance following the transformation pro-

cess, one can assume that the second mode is no longer amplified for /63
TNPZ 1.728. The curve dashed in for M = 1.67 was not calculated.

The effect of Mach number upon the neutral wave number oy is shown in

Flgure 30 for Var1ous env1ronment temperatures T, It was shown, at the

same t1me, how o changes w1th the disturbance angle of 1nc1dence 0. The

N
- approximative calculation of neutral supersonic disturbances (cN_> a2),

however, was carried out only for the angle of incidence © = 0°. For T2 =

0.6 and 6 = 0°, three neutral wave numbers are found in the range
1.54 < M < 1.73, corresponding to the occurrence of the second mode. This
. range becomes smaller and smaller for higher enviromment temperatures and

~is no longer perceptlble for T 5 = 2, In Figure 31, the calculated neutral

‘wave numbers for the Lock profile are compared with the results of Lessen,
"Fox and Zien [25]. The deviations can apparently be explained by the fact
‘that Lessen, Fox and Zien have calculated the velocity profile exactly from
the d1fferent1a1 equation (2.20), whereas the approximative equation (2.27)
‘was used for the velocity profile in the author's calculations.

The effect of the three- dimensionality of the disturbances upon the
stability of the Lock profile is shown in Figures 32 through 34. They thus
" supplement the representation of profile stability relative to two-dimensional
“disturbances in Figures 14 through 16. For low Mach numbers, the maximum
“amplification becomes smaller as the disturbance angle of incidence 0
inecreases. At the same time, the range of amplified frequencies becomes A
'smaller. This result coincides with the statement made by Squire's theorem
'[50] for M = 0 (see Section 1). For higher Mach numbers, however, the
.'relat1onsh1ps can be reversed, so that three-dimensional d1sturbances are

e __5,3__
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amplified more markedly than two-dimensional. In the Lock profile studied,
this is even the case for M = 2; the results were magnified in Figure 35
for this Mach number. The effects of three-dimensionality of the dis-
turbances is greatest at Té = 0.6 for the cooled free jet; here disturbances
which are propagated at an angle of © = 50° to 60° relative to the direction
of flow are amplified the most. Calculations show that all disturbances
which are propagated at this angle still have subsonic character over the
-entire flow field even at M = 2. Interestingly, the second mode found for

= 0.6 and © = 30° is amplified almost as sharply as the first mode of the

two-dimensional disturbances.

The Eigenvalues were calculated from the differential equation (7.5)
for x(u) using the method given in Section 7. The curves of the complex
function y(u) were plotted in Figure 36 for various disturbance frequencies
B and for a principal flow with M = 1.6 and T = 0.6 in which the two

~disturbance modes are amplified X is.a pure real for the neutral dis-
turbance freqeuncy B of the flrst mode (Case 3); on the other hand X is

_complex for the two 51ngu1ar neutral solutlons of the second mode (Cases
4 and 7).

The curves of several complex Eigenfunctions were determined for the
maximum amplified disturbance frequency in each case for various Mach

numbers M and the environment temperature T, = . The real and 1mag1nary

2
components of the Elgenfunctlons f(y), a¢(y), ﬂ(y) and O(y) were plotted
in Figures 37 and 38 for u', v', p' and T' disturbances. According to
"(3.4), the complete solution for a particular disturbance value Q' is com-
posed of the complex Eigenfunction q(y) and the complex exponential term
exp[i(ox + yz - Bt)]. To be sure, only the real component of the disturbance
value Q' is of phy51cal significance in the sense of a measurable value;
it is calculated using Equation (3.26). Accordingly, the amplitude dlStrl-
bution of the disturbance in a particular cross section x = const. of the
free jet is proportional to the magnitude of the complex Eigenfunction
‘|q(y)1, whereas the phase angle 1 is determined by the relationship between

~ “‘the imaginary and real components of the Eigenfunction. The corresponding

“amplitude distributions and the phase angle of the disturbances were therefore

calculated once more from the Eigenfunctions shown in Figures 37 and 38 for
“the maximally amplified disturbance frequency in each case.

‘ Figures 39 and 40 show the amplitude distribution of u', v', p' and T'
~disturbances, while the phase distribution of the u' disturbance has been

plotted in Figure 41. One can see in Figure 37 that for M = 0 (Case 1) the
“real component f and the 1mag1nary component f of the u' disturbance have

‘'a common zero p01nt for y < 0. It follows from this that the associated
amplitude distribution of the disturbance (Flgure 39) likewise becomes zero
at this point and that the disturbance phase is rotated through an angle of
- 180° (Figure 41). This zero point in the amplitude distribution of the u'

,dlsturbance as well as the assoc1ated phase rotatlon were also found by ,

- — -— .- - e
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Freymuth [11] in an experimental study on the stability of the free-jet
boundary layer at low velocities (see Section 1). Figure 39 shows that the
zero point disappears under the effect of compressibility and the amplitude
subsequently exhibits only a relative minimum which becomes less and less
pronounced as Mach number increases. Correspondingly, the phase distri-
bution of the disturbance exhibits no phase discontinuity for M > 0, but
rather only a steep phase slope which likewise dlsappears W1th 1ncrea51ng
Mach number (Figure 41). l

Figure 42 shows a comparison of the amplitude and phase distributions

of the u' and v' disturbances of the first and second mode at Mach number
M = 1.6 and environment temperature T2 0.6 for the drawn-in disturbance

frequency B = 0.0542. Both disturbance modes are amplified to an equal ;
extent for this disturbance frequency. : :

9. Appendix

3.1 A Lower Limit for the Phase Velocnty of Spacially Amplified
Disturbances :

If the d1fferent1a1 equation (3. 19) is rewritten by introducing a
- function :

. '. Y : ﬂ : T (9-1)
UL T
- the result is o
e
i B - B2 '
U 2 (G-§)° | 9.2
L(\U) [-'Lg—g)]‘ —~—_~_i__ﬁ._._ W =0. (9.2)
If the integral expression i
1T LW -y LWy =0, (0.3

- is now formulated and the boundary condltlons (3.27) are taken into consider- /66
ation, the result is



+OOIU 25 ay CF(E'; G+(T-cr) (0 gz o) i
Ala Cl.rf[ la|[° IG[Z

+lwl? - 3 (G ~cp)] dy = 0.

This integral can only disappear for amplified disturbances if the
expression. u, - c. becomes negative within the flow, so a lower limit is

obtained for cr:
Cr> ... =0. (9.-5)

If the imaginary component of the 1ntegra1 expression (9.3) is evalu-
ated for timewise-amplified disturbances, it is possible to derive a lower
and upper limit for c.. (see equatlon (5 2))

9 2 The Behavnor of the Elgenfunctlon ¢ in the Vlcmlty of the Crltlcal
Layer for Neutral Disturbances

Assuming that the coefficients of the differential equation (3.19) can
_be expanded in terms of powers of y - Ye in- the vicinity of y = Y» one
obtains o

I L T L L !
6 f’?i'+(e) (y_)'c)+'--x

6(D) = T () +16(§) T y-ve) * .., 9.6
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Thus, as an approximation,

{

for (3.19) in the vicinity of y =

According to Kamke [14], this dlfferentlal equatlon has the linearly

pendent solutions

@ = Ay - yc)/gi(y * )

!
{

‘P'

o~

""Ckp""(

+ E) @7

= yc’ Wit'h. S

- DR e e Setmmene iz + e memrleee R
{ ;.T ! _ le Q' =L Ty
oo o ag ) ey lPle)l

'fiw—tp =Sy, log (y - %) +92(y ~Ye),

i
~with g1 (y - yc)

92 (y Ye) =

‘The coefficients a; and b

(9.8) into equation (9.7):

—1+0 (y yc)+u (y yc)2+

=1y (y=ye) b, (y yc)2

g, = C¥D 1 U
] 2 2 g
‘by= 5 [D(C-3ay) +E]
SR PO X
= p = —C Yy
5=D Gc'(T)c_,

YT o

it is possible to set

~
0
~
~—

inde-

(9.8)

(9,9)

j are determined by‘substituting the solutions




-——-through time- averaglng, - S

In the critical layers, ¢l and ¢2 and all derlvatlves ¢1(n) are

regular whereas all derlvatlves ¢( n) become singular logarithmically if

I
0

the coefficient'D does not dlsappear. ;
- !
9.3 The Substantial Change In The Timewise Mean Value of the Kinetic
Disturbance Energy

If the first equation of the system (3.1) is multiplied by u, the
second equation by v and the third equation by w, and the equation are

summed the mechanlcs energy equation for frictionless medla is obtained:

2 1 PO

___If the disturbance equation (3.2) is substltuted into .(9.10), all terms

'*v w2 'lp 8p . 9o
th( )=- %Mz( +V ay 32)’ (9.10)
D.3 ., 8., 1; 8
where ‘Df—at +ua ay rw 3

“again drop out which contain only principal-flow quantities. If all third
and higher order terms in disturbance quantltles are neglected, one obtalns,

(9.11)

9 -0 e T, 3, 00
P(ﬁ’c' Yax 2 )+p vy m(u'ax 'ay VST )= )
- ]
- ‘P“(“ v! au "‘W' ok (' 5 +p' 3‘; p'v! %).

If one uses the disturbance equatlon (3.2) in the first equation of

the

system (3.1) and determines the time-average value in the same manner, one

"' can see.that the right side of (9.11) becomes zero. One thus obtains

508 o i—mdT 1 D 8p' , . 30’ L (9.12)
| P(at+“ax)( 2 )==p u'v ‘! —Mi(U'—p—W' 9p’ 5%). .
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 If the results of the linearized sfébﬁlify étudyr(S:SSWaféméﬁbéfifaféd )
into (9.12), the two terms on the right side are then

o
=1

l

D1 j = e
| W(u'—gx&rv'gl;—»w'—ﬂ—)% e<ilaFryR)E + &0

o
~<

For the special case of neutral dlsturbance the disturbance ampli-
- tude may not undergo a change, and the left side of (9.12) must disappear.
This is verified by calculating out the terms on the right side for

a; = 0. After a number of intermediate computations, one obtains

1, .80 ._p_ apy . Oy _de_ di  (9.14)
—W(' v +wa )IO—ZGJmQPd_;‘/Q?HT':

For neutral subsonic and sonic disturbances, ¢ is real, and both terms

.. disappear separately, whereas for neutral supersonic disturbances, only

‘their sum becomes zero. With the aid of (5. 15), one can show that for
‘neutral supersonic disturbances, the. expression <¢¢'> is identical to the
Wronskian determinant W:

i
[ A ¢

l / '
Jm<kptp>-kprtp' tptp W KG (9.15)

Thus for the Reynolds shear stresses, one obtains, with (5.21) and
(9 14), : 5

.|

a
\tR la l’“Gi:%a,NK.' (9.16)

—- - L I e e L Tod l

9.4 The Behavior of the x Function in the Vicinity of the Critical Layer j/70
For Neutral Disturbances

|
. : {
With the aid of (3.17), it is possible to eliminate the Eigenfunction ‘
T from (7.1) so that the function x can be represented in the form



i

iy

1, P o
X= G [(a %) v U (9.17)

For neutral disturbances, however, the behavior of the Elgenfunétlon ¢
in the vicinity of the critical layer is known; from equations (5. 9),
(5.10) and (9.8), one obtains

| - S (9.18)
P VetV e |

P ovgty g, '

= V3 9,(y-y.)+Dlg,ly-y.) +g, (y-y,) log (y -y,

’Lwith g3(y-yc) =1+ 2q1(y—yc)+302(y—yc)2 ) 1

wgl'()"‘yc) “1+(Q1 + 2 —I%) (y—-yc) +(02+3 %1) (y__yc)z

and V3 = Vg vy =

WlE

For the behavior of the x functlon in the V1c1n1ty of the critical layer,
one thus obtains

[T o |
"l

| e 7= {1- v3(y Ye)9 - Dy -y,)Lg REPRLELSN) R CRE)

X thus remains reguiar for all neutral disturbances in the critical
~layer and assume the value there of

e, T (9.20) /71
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‘which .is independent of the Eigenvalue o. The derivative x' becomes

singular in the critical layer and undergoes a jump, due to the analytical
‘extension of the logarithm, for negative arguments, by the amount

f
!
|

<o

(] D ;
c [(9.21)

|

Lim [y (yc+e) -x' (yc—e)] =i
e~0 '

=

For neutral subsonic and sonic disturbances, D = 0, and all derivatives
of x are likewise regular In accordance with Section 5.2, Vgs Can be set

equal to 0 in this case, so x is real over the entire integration range,.
whereas y is to be taken as complex for neutral supersonic disturbances.

'9.5 The Disturbed Laminar Boundary Layer in Compressible Fluids as an
' Acoustic Source

From the system of equations (3.3) one obtains, by solving for the

- pressure fluctuations p', the equation

g2, o2y o%p', 3%p —BP__.:
“ﬁ-é-iP-—aZ[m—%z—)- + b sy 20

(9.22)

du  av' . _1_ dT 3p

E2n MZ dy B8y .

| dy é—x_

At the edges of the boundary layer this d1fferent1a1 equatlon with

1“(4 2), becomes

'_é_?p__ aaai’"a!-_f —
y = 400 7 2[1 M a +ay az?]-;-z o’p =qQ (9.23)

"and

: VVW.—P“iM“; N 9.24
y— - 3 '-62[32'+%2'+§~2-’%]='0 o
at 2 10x y z
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One thus obtains the homogeneous acoustics wave equation for the propa-
‘gation of sound in a fluid fIOW1ng in the x direction at Mach number M or

for the propagation of sound in a fluid at rest. 1In the boundary-layer
region, however, the inhomogeneous wave equation with the source terms

1

0y, 400V, 14T e
; % y 8x Mz dy 3y (9.25)

Y

applies, i.e., regions within the disturbed lamlnar, compre551ble flows with
non-zero veIOC1ty gradients or temperature gradients are to be considered
~as source regions for pressure fluctuatlons and thus -as sources in the
acoustical sense.

Note ; : /73
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Figure 1.
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“ Figure 19. Wave Number oL for Two-Dimensional, Spacially

- Amplified Disturbances of the Lock-Profile as a Function -

of Disturbance Frequency B and Mach Number M for the

Environment Temperature T, = 2 (Heated Free Jet).
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Spacially AmpliFied Disturbances of the Lock Profile as a
Function of Disturbance Frequency B and Mach Number M for
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Figure 21. Phase Veloéfty'cr = B/ar for Two-Dimensional,

Spacially Amplified Disturbances of the Lock Profile as a
Function of Disturbance Frequency B and Mach Number M for
the Environment Temperature T, = 0.6 (Cooled Free Jet).
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P Profile as a Function of Disturbance Frequency 8 and Mach
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